ELECTRICAL SUBMERSIBLE PUMPS (ESP) DESGIN OF WELLS (FD32) (FB18) NC-174, ALFEEL FIELD IN MORZUQ BASINE

Salem Khalefah Fattouh^{1*}, Salah Husayn Alkeelani², and Najw Abdulmajid Salim Bahroun³

^{1,2} Department of Petroleum Engineering, Sabratha, University, Sabratha, Libya

³ Department of Geology, Al-Zawia, University, of Al-Zawia Libya

* Salem Fattouh@gmail.com

Abstract

The main objective of this study is to identify and select an electric submersible pump to produce high flow rates of oil. The electric submersible pump was chosen because it provides good flow rates in a given range. This electric submersible pump was used to raise production rates.

The study was conducted on two wells from Mellitah Oil Company in El Feel field and the results were as follows. Well (FD32) results were the required rate of 3283STB/d can be obtained using only 166 stages, while Well (FB18) results were 6180STB/d and 204 stages, and this required 2300V.

Keywords: Electrical Submersible Pump (ESP); Pump; Well head; Alfeel Field; Morzuq Basine.

Introduction

Electrical Submersible Pump (ESP) System Previous Studies

An Electrical Submersible Pump is usually composed of a motor, a seal (protector), a gas separator, a multistage centrifugal pump, an electric cable, a switchboard and a transformer Figure (1), shows a typical complete system of ESP. (Beggs, H.D., OGCI Publications, 1991).

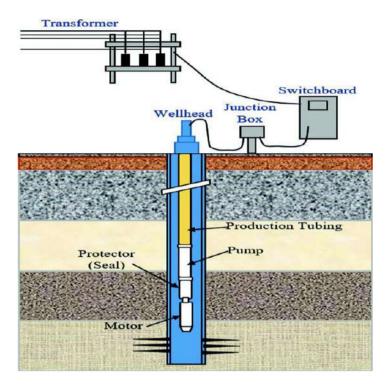


Figure (1): Standard ESP Complete Setup (John Bearden, August 2007).

Submersible Pump

Pumps used in ESPs are usually multi staged and centrifugal ones. Every stage includes an impeller and a stationary diffuser. The type of the stage determines the produced fluid, while the number of stages define the generated total head and the required horse power. Pumps are manufactured with different capacities and types to accommodate different well conditions.

The change in the pressure energy is obtained by the pumped liquid as it surrounds the impellers. The pumped fluid is affected by two factors: tangential and radial forces. As the impeller rotates, it imposes a rotating motion to the pumped liquid. It also imposes a motion that is tangential to the impeller's outer diameter.

The result of this motion is a centrifugal force that forces the liquid to flow in a radial direction. The second part of the pump stage is the diffuser. The purpose of the diffuser is to reduce high velocity energy to low velocity. Also, it helps in directing the pumped fluid into the next impeller (Brown, K.E., 1980).

When designing for an ESP installation, choosing the right submersible pump is critical since each pump has its own limitations and works for certain applications. Usually, the normal length of a single pump is about 20 - 25 ft., which is to accommodate handling and assembling pumps. Depending on the required head to

produce the fluid, pumps can be joined together to create the required head (John Bearden, August 2007).

Location of Study Area

It is located in the Murzuq basin in south-western Libya in the western part of concession NC174 and has been discovered in October 1997.

The case study is on wells (FD32) & (FB18) Figure (2). (http://www.Mellitah Oil & Gas Company).

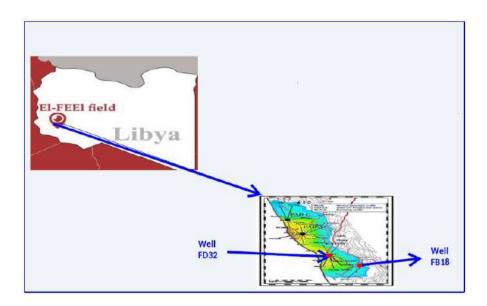


Figure (2): Location of Study Area (Http://Www.Mellitah Oil & Gas Company).

Methodology

The study followed the following procedure.

- 1- data collection
- 2- Calculating oil specific gravities (γ_o) oil Sp.gr = $\frac{1415}{131.5 + API}$
- 3- Average Sp.Gr(γ_{ave}) = $(\gamma_o * O_c) + (\gamma_w * W_C)$
- 4- average liquid gradient $L.G = \gamma_{ave} *0.433$
- 5- Calculate Flowing bottom hole pressure (Pwf) = Pws (Q/PI)

- 6- Total Dynamic Head calculation TDH = Hd + Pd + Ft
- 7- Dynamic fluid level (Hd)= Datum (Pwf / ALG)
- 8- Well head (Pd) = (Pwh / ALG)
- 9-10- Calculating voltage drop $VD = \frac{total depth*correction factor*voltage dropper.1000 ft}{1000}$
- 11- Calculating the required surface voltage (Vs) = Voltage Drop + Motor Voltage
- 12- Calculating the size of transformer $KVA = \frac{1.732*Vs*Amp}{1000}$
- 13- Calculating the fluid velocity beside the motor $Vf = 1.19 \times 10^{-2} \frac{Q}{ID_c^2 0D_m^2}$
- 14- End design

Data Collection of Well (FD32 - NC174).

Table (1): Reservoir Parameters (Http://Www.Mellitah Oil & Gas Company).

Reservoir Parameters / Production Data								
Tubing size	3 ½"							
Casing size	7							
PI	8.5							
Reservoir Pressure psia (Static BHP)	950							
Temperature at reservoir F	175							
Stock tank oil gravity, API	38.5							
Bubble point pressure Pb, psia	130							
Well head pressure, psi	150							
Desired Production Rate, bbl/day	3283							
Water specific gravity	1.04							
Wc	61							
GOR	18							

Data Collection of Well (FB18 -NC174)

Table (2): Reservoir Parameters. (http://www.Mellitah Oil & Gas Company).

Reservoir Parameters / Production data							
Tubing size	4 1/2"						
Casing size	8 ½"						
PI	8.5						
Reservoir Pressure psia (Static BHP)	950						
Temperature at reservoir F	180						
Stock tank oil gravity, API	38						
Bubble point pressure Pb, psia	142						
Well head pressure, psi	115						
Desired Production Rate, bbl/day	6180						
Water specific gravity	1.04						
Wc	35						
GOR	17						

Results and Discussion

1. Calculations of Well (FD32)

Calculating the oil specific gravities, average liquid gradient, and average fluid specific gravities

$$(\gamma_{o})$$
 oil Sp.gr = $\frac{1415}{131.5 + API}$
 (γ_{o}) oil Sp.gr = $\frac{1415}{131.5 + 38.5} = 0.730$

Average Sp.Gr(
$$\gamma_{\text{ave}}$$
) = $(\gamma_o * O_c) + (\gamma_w * W_C)$

Average Sp.Gr(
$$\gamma_{ave}$$
) = (0.730*0.39) + (1.04*0.61) = 0.919

$$L.G = \gamma_{ave} * 0.433$$

$$L.G = 0.919*0.433 = 0.397 \, psi \, / \, ft$$

2. Calculating Flowing Bottom Hole Pressure (Pwf).

$$Pwf = Pws - (Q/PI)$$

3. Total Dynamic Head Calculation

$$TDH = Hd + Pd + Ft$$

3.1 Dynamic Fluid Level (Hd)

$$Hd = Datum - (Pwf / ALG)$$

$$=6980 - (563.7 / 0.397) = 5560 \text{ ft}$$

3.2 Well Head (Pd)

$$Pd = (Pwh / ALG)$$

$$= 150/0.397 = 377 \text{ ft}$$

3.3 Frictional Head Loss In 4.5" Tubing @ 3283 B/D

By using frictional head chart

Friction loss (ft) =
$$(30/1000 \text{ ft})$$
 * Pump set depth

$$TDH = 5560 + 377 + 184 = 6121 \text{ ft}$$

4. Pump Selection

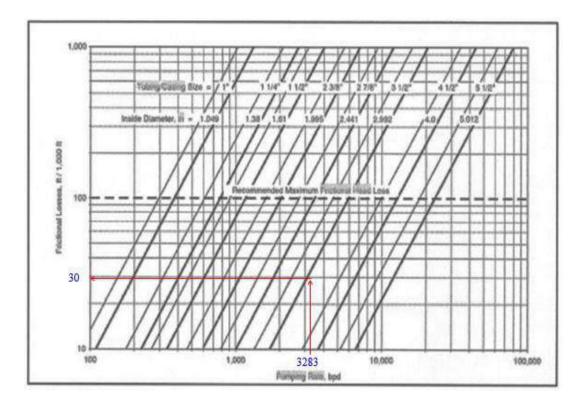


Figure (4): Friction Loss (Ft) of FD32. (Sevin, B., November 12 – 14, 1991).

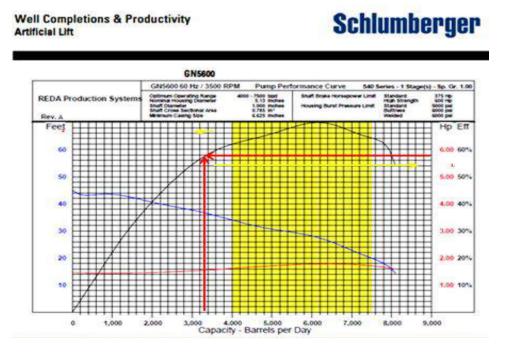


Figure (5): Flow Efficiency of FD32 (Gabor Takacs, May 2009).

Table (3): Pump Selection.

EFFICIENCY (%)	HEAD (ft /stage)	HP per stage (ft/stage)	NO. SERIES	TYPE
58	37	1.6	540	SN-3600 60 HZ

5 Calculating the Required Number of Stage

NO. Of stages required = TDH / Head per stage.

NO. Of stages required
$$=\frac{6121}{37} = 165$$
 Stages

Motor Selection

HP required = HP per stage
$$\times$$
 NO. Of stages \times S.G + 5 = 1.6*165*0.919+5 = 247 HP

6. Determining the motor voltage and motor amperes

Table (4): Determine the Motor Voltage and Motor Amperes. (Sevin, B., November 12 – 14, 1991).

empletions & Productivity Lift						SC	hlumberg	
	Motors - SX		89				SK] SK
60 50 HP	HZ RATIN	-		Туре	L	Wit	Part Number	Part Number
		900	377			-		
125 104	1315	1006	50	- 3	15.7	1007	1049246	1049469
		-	-	UT	15.8	1000	1049311	1049535
	2425	2021	32	3	16.2	1007	1049238	1049451
150 125	1175	925	79	UT	15.8	1194	1049003	1049527
130	3170		150	LIT	19.5	1 1204	1090011	1060466
				CT	19.9	O. Control	1066570	1066646
	2390	1983	59	- 3	19.4	1194	1099965	1060409
			220	UT	18.5	480	1060102	1060657
175 146	1070	952	99.5	- 9	22.2	1360	1066829	1066964
and the same	77300		192600	UT	21.2	2,724	1066430	1966992
	10000000	200	0000	CT	21.5	10000	1006588	1000653
	1350	1125	78.5	- 31	22.2	1360	1066836	1966976
	100.00		57.50	UT	21.2		1066448	1967008
		2000	-	CT	21.5	10000	1066596	1066661
	2200	1933	48	- 31	22.2	1360	1059672	1960326
-	1200	****	-	UT	21.2	1200	1060029	1060474
200 107	1220	1017	99	B UT	24.1	1580	1060637	1060492
				CT	24.3		1066604	1066679
	2175	1913	56	- 31	24.1	1560	1050696	1060342
		2000	100	UT	24.0		1060045	1060490
2,500.00	4140	3460	29	9	24.1	1580	1106796	TBA
225 100	1000	833	133	- 5	27.6	1793	1059906	1060359
913-0-1	100000	1012-000	140000	UT	26.7	0.000000	1060052	1060509
	1000000	22000-	2000	CT	27.0	1175-3	1066612	1066697
	1346	1138	100	- 31	27.6	1793	1066844	1066964
				MI	26.7		1066455	1067016
		-500	10000	CT	27.0		1066620	1066695
	3016	1728	64	- 53	27.6	1793	1059914	1060967
	2425	2021	56	UT	26.7	1793	1060060	1060516
	24/0	2021	160	LIT	26.7	1790	1060022	1060975
260 26	100	4/25	135.5	- 5	30.4	1979	1060679	1060524
		70.000	1000	LIT	29.5		1060086	1060532
				CT	29.7		1096638	1966703
	1375	1148	110	UT	29.5	1979	1105873	TBA
	3340	10000	1000	CT	29.7		1105881	TBA
	2300	(2193)	65	54	30.4	1979	10499949	1060391

7. Determining Voltage Drop in the Cable & Correction Factor

Voltage drop in the cable = 23

Correction factor = 1.21

Table (5): Motor Selection.

Motor Amperes	Motor Voltage	Motor Hp	Motor Series	
65	2300	249	540, 60 HZ	

8. Calculate Voltage Drop (VD)

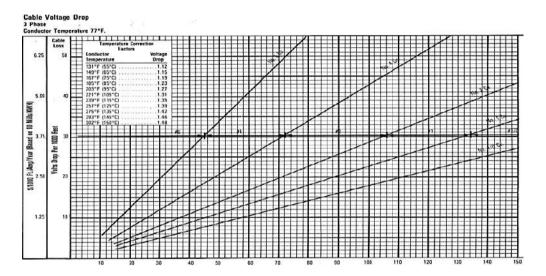


Figure (6): Voltage Drop (VD) Well of FD32 (Gilbert, W.E., 126 – 57, 1954).

$$VD = \frac{total - depth*correction factor*voltaged ropper.1000 ft}{1000}$$

$$VD = \frac{6980 * 1.21 * 25}{1000} = 211.14 Volt$$

9. Calculating the Required Surface Voltage (Vs)

10. Calculating the Size of Transformer (KVA)

$$KVA = \frac{1.732 * Vs * Amp}{1000}$$

$$KVA = \frac{1.732 \times 2511.14 \times 65}{1000} = 282.7$$

11. Calculating the Fluid Velocity Beside the Motor (Vf)

$$Vf = 1.19 \times 10^{-2} \frac{Q}{ID_C^2 - 0D_m^2}$$

$$Vf = 1.19 \times 10^{-2} \frac{3283}{6.23 - 5.4}$$

Table (6): Select of Motor.

Cooling efficiency	VF	KVA	VS	VD	HP	TYPE
GOOD	19Ft/sec	282.7	2511.14volt	211.14 volt	249 hp	540,60 HZ

Weight (Ibm)	Length(ft)	Actual No. Of Stages	Series	Pump Type
1978	30	166	540	SN-3600,60Hz

Calculations of Well (FB18)

1. Calculating the Oil Specific Gravities, Average Liquid Gradient, and Average Fluid Specific Gravities

$$(\gamma_{o})$$
 oil Sp.gr = $\frac{1415}{131.5 + API}$

$$(\gamma_{0})$$
 oil Sp.gr = $\frac{1415}{131.5 + 38} = 0.732$

Average Sp.Gr(
$$\gamma_{\text{ave}}$$
) = $(\gamma_o * O_c) + (\gamma_w * W_C)$

Average Sp.Gr(
$$\gamma_{ave}$$
) = (0.732*0.65) + (1.04*0.35) = 0.839

$$L.G = \gamma_{ave} * 0.433$$

$$L.G = 0.839*0.433 = 0.363 psi / ft$$

2. Calculating Flowing Bottom Hole Pressure (Pwf).

$$Pwf = Pws - (Q/PI)$$

$$= 950 - (6180/23) = 681$$
Psi

3. Total Dynamic Head Calculation

$$TDH = Hd + Pd + Ft$$

3.1 Dynamic Fluid Level (Hd)

$$Hd = Datum - (Pwf / ALG)$$

$$= 8588 - (681/0.363) = 5200 \text{ ft}$$

3.2 Well Head (Pd)

$$Pd = (Pwh / ALG)$$

$$= 115/0.363 = 316.8 \text{ ft}$$

3.3 Frictional Head Loss in 3.5" Tubing @ 6180 B/D

By using frictional head chart

Friction loss (ft) =
$$(28/1000 \text{ ft})$$
 * Pump set depth

$$= 0.030 * 6200 = 186$$
 ft

$$TDH = 5200 + 316.8 + 186 = 5700 \text{ ft}$$

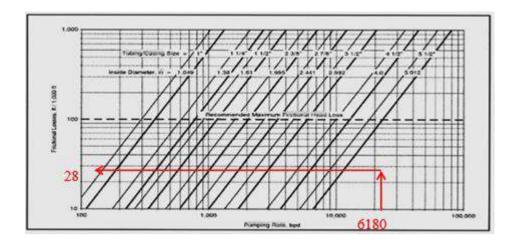


Figure (7): Friction Loss (Ft) of FB18 (Sevin, B., November 12 – 14, 1991).

4. Pump Selection

Well Completions & Productivity Artificial Lift

Schlumberger

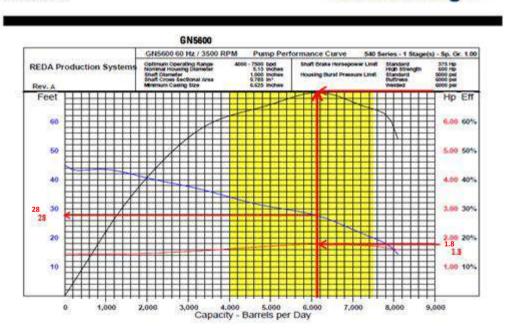


Figure (8): Flow Efficiency of FB18 (Gabor Takacs, May 2009).

Table (7): Pump Selection.

EFFICIENCY (%)	HEAD (ft /stage)	HP per stage(ft/stage)	NO. SERIES	ТҮРЕ
58	28	1.8	540	HN-3600,60 HZ

5. Calculating the Required Number of Stage

NO. Of stages required = TDH / Head per stage.

NO. Of stages required
$$=\frac{5700}{28} = 204$$
 Stages

6. Motor Selection

HP required = HP per stage
$$\times$$
 NO. Of stages \times S.G + 5 = 1.8*204*0.839+5 = 313 HP

7. Determining the Motor Voltage and Motor Amperes

Table (8): Determine the Motor Voltage and Motor Amperes. (Sevin, B., November 12-14, 1991).

mpletions & Productivity Lift						Sch	lumber		
540 Sa		HZ RAT		n:				5K Carbon Steet	Si
.00	560	HZ MAI	overa-a-	_		1	WI	Part Steel	Part
54	P	Ve	etts	Amps	Type		(1.00)	Number	Number
wood!	OF SHIP AS	Savera A			THE PERSON NAMED IN	7200	1		- C
125	104	1315	1096	60	-5	15.7	1007	1049246	1049469
					UT	15.9		1049311	1049535
		2425	2021	32	S	35.7	1007	1049238	1049451
					UT	15.8		1049303	1049527
150	125	1170	975	78	S	19.4	1194	1069854	1060318
				I	UT	19.5	1	1060011	1060466
			100 000000	-	CT	18,8	-	1066570	1066646
		2380	1983	22	8		1194	1069955	1060409
1.00		1020	992		UT	19.5		1060102	1060557
175	146	1070		99.5	UT	21.2	1380	1066430	1068992
				ı	CT	21.5		1066588	1066653
		1350	1125	78.5	5	22.2	1380	1066836	1066976
		1200	1125	18.0	UT	21.2	1,360	1066448	1067008
					CT	21.5		1006596	1069661
		2200	1833	42	5	22.2	1380	1059872	1060326
			and the second		LIT	21.2		1060029	1060474
200	167	1220	1017	- 99	5	24.1	1580	1050990	1060334
		700000			UT	24.0		1060037	1060482
					CT	24.3		1066604	1066679
		2175	1813	56	5	24.1	1580	1050090	1060342
		Light district		238	UT	24.0	100	1060045	1060490
22:00		4140	3450	22	S	24.1	1580	1108786	TBA
225	188	1000	800	133	S	27,6	1793	1069906	1060359
					UT	26.7		1060052	1060508
					CT	27.0	1	1066612	1066687
		1365	1138	100	- 5	27,6	1793	1066844	1066994
				1	UT	26.7		1066455	1067016
		-	-		CT	27,0		1066620	1066695
		2075	1729	64	S	27.6	1793	1059914	1060367
		2425	2021	56	S	27.6	1793	10909922	1060516
		2425	2021	56	UT	26.7	1 7953	1069922	1060524
250	200	1120	5/2/2	135.5	3	30.4	1978	1099930	1060383
	230	-120	-33	Can S	UT	29.5		1060086	1060532
					CT	29.7		1066638	1066703
		1325	1146	110	UT	29.5	1979	1105823	TBA
		125 A			CT	29.7	1	1105891	TBA
	304	2300	1917	(65)	5	30.4	1979	1059948	1060391
	000		1000000		UT	29.5		1060094	1060540

8. Determining Voltage Drop in Cable & Correction Factor

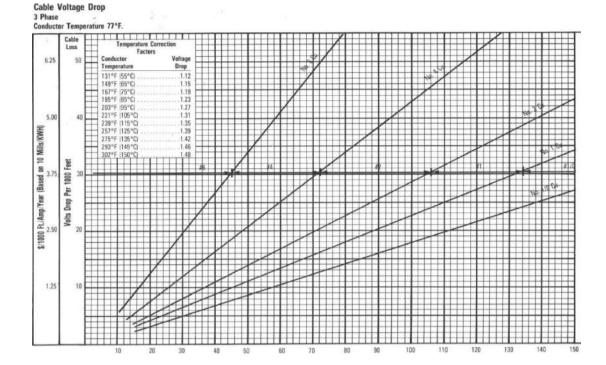


Figure (9): Voltage Drop (VD) Well of FB18. (Gilbert, W.E., 126 – 57, 1954).

Voltage drop in the cable
$$= 25$$

Correction factor $= 1.23$

9. Calculate Voltage Drop (VD)

Table (9): Determine the Motor Voltage and Motor Amperes.

Motor Amperes	Motor Voltage	Motor Hp	Motor Series	
65	2300	249	540,60 HZ	

10. Calculating Voltage Drop

$$VD = \frac{total - depth*correction\ factor*voltage\ dropper.1000\ ft}{1000}$$

$$VD = \frac{8588*1.23*25}{1000} = 264\ Volt$$

11. Calculating the Required Surface Voltage (Vs)

$$Vs = Voltage Drop + Motor Voltage$$

$$= 264+2300=2564$$

12. Calculating the Size of Transformer (Kva)

$$KVA = \frac{1.732 * Vs * Amp}{1000}$$

$$KVA = \frac{1.732 \times 2564 \times 65}{1000} = 288$$

13. Calculating the Fluid Velocity Beside the Motor (Vf)

$$Vf = 1.19 \times 10^{-2} \frac{Q}{ID_C^2 - 0D_m^2}$$

$$Vf = 1.19 \times 10^{-2} \frac{6180}{6.23 - 5.4}$$

Table (10): Select Motor.

Cooling efficiency	VF	KVA	VS	VD	HP	ТҮРЕ
GOOD	19.2Ft/sec	288	2564 volt	264 volt	249 hp	540,60 HZ

Table (11): Calculations of Well (FB-18).

EFFICIENCY (%)	HEAD (ft /stage)	HP per stage (ft/stage)	NO. SERIES	ТҮРЕ
70	28	1.8	540	HN-3600,60 HZ

Weight (Ibm)	Length (ft)	Actual No. of Stages	Series	Pump Type	
1978	30	204	540	HN-3600,60Hz	

Results of ESP Design

Through the calculations for the design of the electric submersible pump for the two wells, the following information must be taken into account:

Table (12): Results of ESP Design.

Motor data				Pump selection			Well			
hp	volts	Amp	Vf (Ft/sec)	KVA	Motor type	TDH (Ft)	Pump type	Stages	Pump Depth (Ft)	Number
247	2300	65	19Ft/sec	282.7	562	6107	SN-3600	166	5665	FD32
313	2300	65	9.2Ft/sec	288	562	6646	HN-3600 540	204	5653	FB18

Conclusion

Through the calculations for the design of the electric submersible pump for the two wells, the following points must be taken into account:

- 1- For FD32 well, to produce the required rate of 283STB/d, SN-3600 must be used and this requires 166 phases, 2300 volts, 65 amps, and 282.7 KVA.
- 2- For FB18 well, to produce the required rate of 6180STB/d, HN-3600 pump must be used, and this requires 204 phases, 2300 volts, 65 amps, and 288 KVA.

References

- Beggs, H.D., OGCI Publications, 1991. "Production Optimization Using Nodal Analysis".
- Brown, K.E.,1980, "The Technology of Artificial Lift Methods", Vol.2bPennWell Books, Tulsa, Oklahoma.
- Gabor Takacs, May 2009, "Electrical submersible pump manual: design, operations, and maintenance".
- Gilbert, W.E., 126 57, 1954. "Flowing and Gas-Lift Well Performance", API Drilling and Production Practice, 126 57, 1954.
- http://www.Mellitah Oil & Gas Company.
- John Bearden, August 2007, "Electrical Submersible Pumps", Petroleum Engineering Handbook published by SPE, Volume IV.
- Sevin, B., November 12 14, 1991, "Design and Application of Submersible Pumps in Horizontal Wells in South Texas", Paper presented at the 3rd International Conference on Horizontal Well Technology in Houston, Texas.