

Journal of Applied Science

Biannual Peer Reviewed Journal Issued by Research and Consultation Center , Sabratha University

lssue (13) September 2024

Journal of Applied Science

Biannual Peer Reviewed Journal Issued by Research and Consultation Center, Sabratha University

Editor

Dr. Hassan M. Abdalla

Associate Editors

Dr. Elsaid M. Shwaia Dr. Elsaid A. Elajoz (Egypt) Dr. Antonio M. Camposs (Portugal) Dr. Jbireal M. Jbireal Dr. Salma F. Naji Dr. Ahmed F. Elsgair (Egypt)

English Language Reviewer

Arabic Language Reviewer

Dr. Siham S. Abdelrahman

Dr. Ebrahem K. Altwade

Designed By

Anesa M. Al-najeh

Editorial

We start this pioneering work, which do not seek perfection as much as aiming to provide a scientific window that opens a wide area for all the distinctive pens, both in the University of Sabratha or in other universities and research centers. This emerging scientific journal seeks to be a strong link to publish and disseminate the contributions of researchers and specialists in the fields of applied science from the results of their scientific research, to find their way to every interested reader, to share ideas, and to refine the hidden scientific talent, which is rich in educational institutions. No wonder that science is found only to be disseminated, to be heard, to be understood clearly in every time and place, and to extend the benefits of its applications to all, which is the main role of the University and its scholars and specialists. In this regard, the idea of issuing this scientific journal was the publication of the results of scientific research in the fields of applied science from medicine, engineering and basic sciences, and to be another building block of Sabratha University, which is distinguished among its peers from the old universities.

As the first issue of this journal, which is marked by the Journal of Applied Science, the editorial board considered it to be distinguished in content, format, text and appearance, in a manner worthy of all the level of its distinguished authors and readers.

In conclusion, we would like to thank all those who contributed to bring out this effort to the public. Those who lit a candle in the way of science which is paved by humans since the dawn of creation with their ambitions, sacrifices and struggle in order to reach the truth transmitted by God in the universe. Hence, no other means for the humankind to reach any goals except through research, inquiry, reasoning and comparison.

Editorial Committee

Notice

The articles published in this journal reflect the opinions of their authors only. They are solely bearing the legal and moral responsibility for their ideas and opinions. The journal is not held responsible for any of that.

Publications are arranged according to technical considerations, which do not reflect the value of such articles or the level of their authors.

Journal Address:

Center for Research and Consultations, Sabratha University

Website: https://jas.sabu.edu.ly/index.php/asjsu

Email: jas@sabu.edu.ly

Local Registration No. (435/2018)

ISSN 🗖 2708-7301

ISSN 🕮 2708-7298

Publication instructions

The journal publishes high quality original researches in the fields of Pure Science, Engineering and Medicine. The papers can be submitted in English or Arabic language through the Journal email (jas@sabu.edu.ly) or CD. The article field should be specified and should not exceed 15 pages in single column.

All submitted research manuscripts must follow the following pattern:

- Title, max. 120 characters.
- Author Name, Affiliation and Email
- Abstract, max. 200 words.
- Keywords, max. 5 words.
- Introduction.

- Methodology.
- Results and Discussion.
- Conclusion.
- Acknowledgments (optional).
- References.

Writing Instructions:

Papers are to be submitted in A4 (200×285 mm) with margins of 25 mm all sides except the left side, which should be 30 mm. Line spacing, should also be 1.15.

Table 1. Fold Size and Style					
	Bold	English	Arabic		
Font Style	✓	Times New Roman	Simplified Arabic		
Article Title	✓	14 Capital	16		
Authors Name	✓	12	14		
Affiliation	×	11	13		
Titles	✓	12	14		
Sub-Title	✓	12	13		
Text	×	12	14		
Figure Title	✓	11	13		
Table Title	✓	11	13		
Equations	✓	12	14		

Table 1. Font size and style

Figures:

All figures should be compatible with Microsoft Word with serial numerals. Leave a space between figures or tables and text.

References:

The references should be cited as Harvard method, eg. Smith, R. (2006). References should be listed as follows:

Articles: Author(s) name, Year, Article Title, Journal Name, Volume and Pages.

Books: Author(s) name. Year. "Book title" Location: publishing company, pp.

Conference Proceedings Articles: Author(s) name. Year." Article title". Conference proceedings. pp.

Theses: Author(s) name. Year. "Title". Degree level, School and Location.

Invitation

The Editorial Committee invites all researchers "Lectures, Students, Engineers at Industrial Fields" to submit their research work to be published in the Journal. The main fields targeted by the Journal are:

- Basic Science.
- Medical Science & Technology.
- Engineering.

Refereeing

The Editorial Committee delivers researches to two specialized referees, in case of different opinions of arbitrators the research will be delivered to a third referee.

Editorial Committee

Dr. Hassan M. Abdalla.
Dr. Elsaid M. Shwaia.
Dr. Jbireal M. Jbireal.
Dr. Elsaid A. Elajoz (Egypt).
Dr. Salma F. Naji.
Dr. Antonio M. Camposs (Portugal).
Dr. Ahmed F. Elsgair (Egypt).
Dr. Siham S. Abdelrahman.
Dr. Ebrahem K. Altwade.
Anesa M. Al-najeh.

CONTENTS

[1]	EVALUATION OF DOMINO EFFECT CAUSED BY POOL FIRE IN A TANK FARM
[2]	ASSESSMENT OF HYDRAULIC PARAMETERS OF THE QUATERNARY AQUIFER USING PUMPING TEST, JIFARAH PLAIN, NORTHWEST LIBYA 20
[3]	PREVALENCE OF TRICHOMONAS TENAX IN PATIENTS WITH PERIODONTAL DISEASE IN SURMAN CITY
[4]	SOLUTION OF ABEL'S INTEGRAL EQUATION USING ABAOUB-SHKHEAM TRANSFORM
[5]	MUSCULOSKELETAL DISORDER AMONG WORKERS IN MISURATA STEEL FACTORY
[6]	AFFECTION OF MOORE–PENROSE GENERALIZED INVERSE ON MATRICES OF CUBIC COMPLETE GRAPH AND NON-EMPTY REGULAR (COMPLETE) GRAPH
[7]	PINCH ANALYSIS OF HEAT INTEGRATION AND HEAT EXCHANGER NETWORK DESIGN WITH ASPEN ENERGY ANALYZER IN A NATURAL GAS SWEETENING UNIT
[8]	ASSESSMENTS OF RADIOACTIVITY CONCENTRATION LEVELS FOR NATURAL RADIONUCLIDES IN SOIL SAMPLES FROM ZLITEN
[9]	ELECTROCHEMICAL TECHNOLOGIES FOR HYDROGEN PRODUCTION: A REVIEW
[10]	SIMPLIFIED SUPERSTRUCTURE APPROACH FOR DESIGNING HEAT EXCHANGER NETWORK IN HEATING SYSTEMS OF DISTILLATION CRUDE OIL UNIT: ZAWIYA REFINERY PLANT CASE STUDY
[11]	3.5 GHZ BANDWIDTH AND PATTERN RECONFIGURABLE ANTENN 128

ASSESSMENTS OF RADIOACTIVITY CONCENTRATION LEVELS FOR NATURAL RADIONUCLIDES IN SOIL SAMPLES FROM ZLITEN

Muna M. Aoneas

University of Zawia, Faculty of Science, Physics Department, Al Ajaylat, Libya <u>m.aoneas@zu.edu.ly</u>

Abstract

The aim of this study is to determine the activity concentration of the natural radionuclides ⁴⁰K, ²³²Th, and ²²⁶Ra in Zliten City, Libya, using gamma spectrometry based on a High Purity Germanium (HPGe) detector. Eight samples from different locations in the study area were randomly collected and measured. The activity concentrations of natural radionuclides were found to vary from 168.399 to 678.529 Bq/kg with an average of the measured concentrations for ⁴⁰K, and vary from 21.876 to 228.222 Bq/kg with an average Bq/kg for ²³²Th, and for ²²⁶Ra ranged were vary from 7.672 to 29.069 Bq/kg with an average Bq/kg. the average absorbed dose rate in air 103.60nGh⁻¹, the average value of radium equivalents was 246.132 Bq.Kg⁻¹, the average value of the external hazard indices was 0.252 and the average value of the internal hazard indices was 0.709. The results of the present study were discussed and compared with internationally recommended values.

Keywords: Radioactivity; High Purity Germanium (HPGe) detector; Gamma Ray Spectrometry.

Introduction

Since the beginning of time, humans have been exposed to natural radiation, which is present in all environmental materials, including soil. The presence of radionuclides in soil can originate from various sources, including natural processes and human activities such as nuclear testing, industrial applications, medical practices, and nuclear technology (Khan A.J, et al, 1992).

This radioactivity originates from the decay of naturally-occurring radioactive isotopes, such as potassium-40, thorium-232, and uranium-238. the radioactivity and their daughter in soil and building materials product dangers effect to the human health (R. Obid Hussain, E.Kadum. Abbas, 2010). Monitoring and studying the behavior of the natural radiation in soil helps assess the potential radiation exposure to human (N. M. Hassan, et al, 2018).

Since natural radiation is the largest contributor of external dose to the world population, gamma radiation dose from natural sources is important. The concentration of ²³²Th, ²²⁶Ra and ⁴⁰K varies considerably depending on the type of soil formation (Saleh, A. M., et al, 2013). So, the measurements of natural radioactivity in soil samples are required to determine any changes of natural background activity with time as the result of any nuclear activity (IAEA, 1989). Numerous researchers have studied natural radioactivity in soil (G. Chinnadurai, et al, 2021; S.Y.L Mouandza, et al, 2018; Gyuk,P.M, et al, 2017). The aim of this work is to determine the activity concentration of the natural radionuclides ⁴⁰K, ²³²Th, and ²²⁶Ra in soil samples collected from different areas of Zliten city Libya

Materials and Methods

Sample Collection and Preparation

A total of eight soil samples were collected from randomly chosen locations across Zliten City. Zliten is located approximately 160 km west of Tripoli, the capital city of Libya. The samples were collected from the soil surface at a depth of 2–3 cm, and the coordinates of the sampling locations were recorded using a Global Positioning System (GPS). The details of these coordinates are presented in Table (1).

Sample no.	Sample ID	Latitude	Longitude
1	А	32.449642N	14.590818E
2	В	32. 43216N	14.699759E
3	С	32.361691N	14.583635E
4	D	32.2078217N	14.5026458E
5	E	32.0978002N	14.3156710E
6	F	32.317459 N	14.493403E
7	G	32.418188N	14.479722E
8	Н	32.477162N	14.501761E

Table (1): GPS Location of the Sampling Points.

All of the soil samples were weighed and then dried in an electric oven for 24 hours at 120°C. The samples were placed in Marinelli beakers and stored for 45 days to achieve secular radioactive equilibrium.

Energy and Efficiency Calibrations of the Detector

The activity concentration of ⁴⁰K, ²³²Th, and ²²⁶Ra in soil samples were determined by using High Pure Germanium Detector (HPGe) with relative Efficiency 25 %, and an energy resolution of 1.92 keV for the 1332.5 keV of ⁶⁰Co gamma lines.

The energy calibration of the detector was carried out by using 137 Cs (661.62 keV), and 60 Co (1173.23 and 1332.51 keV) point sources. The detector efficiency calibration curve as a function of energy for solid matrix is shown in Figure (1).

Figure (1): The Efficiency Calibration Curve for HPGe Detector as a Function of Energy.

Activity concentrations

The Activity concentrations of ⁴⁰K, ²³²Th, and ²²⁶Ra in eight soil samples were determined by using a Gamma ray spectrometry system using a High Purity Germanium HPGe detector. The activity concentration of ⁴⁰K were determined directly from the 1460 keV gamma line, but for ²³²Th the activity concentration was determined using the 238.6 keV photopeaks of ²¹²Pb, 583.14 keV photopeak of ²⁰⁸Tl, and 911.07 keV, and 968.9keV photopeaks of ²²⁸Ac. The activity concentration of ²²⁶Ra were determined by using the 295.2 and 351.9 keV photopeaks of ²¹⁴Pb, the 609.3, 1120.3, 1764.51 keV photopeak of ²¹⁴Bi.

The activity concentration of all soil samples was determined by using the following formula (S. Harb, et al, 2008).

$$A((BqKg^{-1}) = \frac{C_a}{Eff.m.I_{\gamma}}$$
(1)

Where A is the activity concentration, C_a is the net gamma counts per second, Eff is the efficiency of the specific gamma-ray, I_{γ} is Absolute intensity of the gamma ray, and m is the mass of the soil sample in kilograms.

Absorbed dose rate in air

The Absorbed dose rate in air calculated at 1 meter above the ground level by using the measured activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K by the following equation (UNSCEAR, 2008; Varshney R, et al, 2010):

$$D_{\rm r}({\rm nGyh^{-1}}) = 0.462 {\rm A_{Ra}} + 0.604 {\rm A_{Th}} + 0.0417 {\rm A_K}$$
(2)

Where D_r is the dose rate, 0.462, 0.604 and 0.0417 are the dose conversion factors for naturally (DRCF), A_{Ra}, A_{Th}, and A_K are the activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in Bq. kg⁻¹, respectively.

Radium Equivalent Activity

The radium equivalent activity \mathbf{R}_{eq} calculated by following equation (José A., et al, 2005):

$$R_{eq} (Bq.Kg^{-1}) = A_{Ra} + 1.43A_{Th} + 0.077A_K$$
(3)

The risk of specific activity could be estimate by using the radium equivalent activity.

External and Internal Hazard Index

The external and internal hazard index for each sample was calculated by following equation (Xinwei L, 2005; Beretka, J.; Mathew, P. J., 1985):

$$H_{x} = \frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} \le 1$$
(4)

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \le 1$$
(5)

Where H_x , H_{in} are the external and internal hazard index, respectively.

Results and Discussion

The varying distribution of the assessed activity concentrations in radionuclides in soil samples in the Zliten City are presented in Table (2). The activity concentration of ⁴⁰K, ²³²Th and ²²⁶Ra in the soil samples ranges from (168.40±6.74 to 678.53±27.14) Bq/kg, (21.88±0.88 to 228.16±9.13) Bq/kg and (7.67±0.3 to 29.07±1.16) Bq/kg respectively.

The average of the soil samples was 435.92±17.44 for 40 K, 137.11±5.49 for 232 Th, and 14.43±0.66 for 226 Ra. Which show that the 40 K radionuclide is most predominant followed by the is 232 Th and then 226 Ra. This shows that the trend in the activity concentrations is 40 K> 232 Th> 226 Ra.

Issue (13)

Sample	Soil	Activity		
no.	simple	⁴⁰ K (Bq.kg ⁻¹)	²³² Th (Bq.kg ¹)	²²⁶ Ra (Bq.kg ⁻¹)
1	Α	168.40±6.74	95.76±3.83	7.67±0.3
2	В	292.19±11.68	177.13±7.09	14.36±0.57
3	С	571.73±22.87	218.22±8.73	16.66±0.67
4	D	514.9±20.60	228.16±9.13	16.68±0.67
5	E	499.46±19.98	21.88±0.88	23.46±0.94
6	F	678.53±27.14	41.25±1.65	29.07±1.16
7	G	391.4±15.65	168.77±6.75	13.29±0.53
8	Н	370.71±14.83	145.70±5.83	10.92±0.44
Average± S.D		435.92±17.44	137.11±5.49	14.43±0.66

Table (2): The Specific Activity of Natural Radionuclides of ²³²Th, ²²⁶Ra, and ⁴⁰K for a Total of 8 Soil Samples.

From Table (2), it was found that the specific activities of ⁴⁰K for A, B, G and H samples were less than the worldwide average (UNSCEAR, 2008), and for C, D, E, and F samples were found to be higher than the worldwide average (420 Bq/kg) (UNSCEAR, 2008). While it is clear that the specific activities for ²³²Th, with the exception of E, and F samples were found to be higher than the worldwide average (45 Bq/kg) (UNSCEAR, 2008). While all values of specific activity of ²²⁶Ra were less than the worlds average activity that recommended by UNSCEAR 2008 (32 Bq/kg) (UNSCEAR, 2008).

Figure (2): Comparing of Specific Activity for ⁴⁰K in All Soil Samples.

Figure (3): Comparing of Specific Activity for ²³²Th in All Soil Samples.

Figure (4): Comparing of Specific Activity for ²²⁶Ra in All Soil Samples

The absorbed dose rate in air D_r , the radium equivalent activity R_{eq} , the external hazard index H_x and internal hazard index H_{in} were calculated and presented in Table (3), and Figures (5), (6).

Sample no	Code sample	D _r (nGyh ⁻¹)	$R_{eq}(Bq.kg^{-1})$	H _x	H _{in}
1	Α	68.40	157.574	0.425	0.446
2	В	125.81	290.155	0.783	0.822
3	С	141.89	372.738	1.006	1.051
4	D	166.99	382.527	1.033	1.078
5	E	26.14	93.207	0.252	0.315
6	F	66.64	140.304	0.379	0.457
7	G	124.40	284.738	0.769	0.805
8	Н	108.51	247.816	0.669	0.699
Average		103.60	246.132	0.665	0.709

Table (3): The D_r, R_{eq}, H_x, and H_{in} for a Total of 8 Soil Samples.

The maximum value of the absorbed dose rate in air 166.99 nGyh⁻¹, and the minimum value was 26.14 nGyh⁻¹ with an average 103.60 nGyh⁻¹. The maximum value of the radium equivalents was 382.527 Bq.Kg⁻¹, and the minimum value was 93.207 Bq.Kg⁻¹ with an average 246.132 Bq.Kg⁻¹. The maximum value of the external hazard indices

was 1.033, and the minimum value was with an average 0.252. The maximum value of the internal hazard indices was 1.078, and the minimum value was 0.315 with an average 0.709.

Figure (5): The Dose rate D_r (nGyh⁻¹), and the Radium Equivalent Activity Ra_{eq} (Bq.Kg⁻¹) for the Soil Samples.

Figure 6: The External and Internal Hazard Index for the Soil Samples

Conclusion

The activity concentrations for soil samples collected from eight locations in different areas chosen randomly around Zliten City were calculated by using High Purity Germanium detector. The activity concentrations of ⁴⁰K for A, B, G and H samples were less than the worldwide average but for C, D, E, and F samples were found to be higher than the worldwide average (420 Bq/kg), for ²³²Th only E, and F samples found to be less than the worldwide average (45 Bq/kg), while the activity concentration of ²²⁶Ra were less than the worlds average activity that recommended by UNSCEAR 2008 (32 Bq/kg).

Acknowledgements

To the Tajura Nuclear Research Center.

References

- Khan A.J, Prasad R. and Tyagl R.K., (1992). " Nuclear Tracks and Radiation Measurements", Vol. 20,No. 4, pp: 609-612.
- R. Obid Hussain, E.Kadum. Abbas, (2010). "Measurement of Natural Occurring Radio nuclides (NORM_s) in soil using Gamma- ray Spectrometry" JORNAL OF KUFA – PHYSICS Vol.2 NO.2.
- N. M. Hassan, Y. J. Kim, J. Jang, B. U. Chang & J.S. Chase. (2018). "Comparative study of precis measurements of natural radionuclides and radiation using in-situ and laboratory spectroscopy techniques. www. nature. com/scientific reports.
- SALEH, A. M., RAMLI, A. T., ALAJERAMI, Y., & ALIYU, A. S. (2013). ASSESSMENT OF NATURAL RADIATION LEVELS AND ASSOCIATED. *Journal of Ovonic Research*, 17 - 27.
- IAEA Measurement of Radionuclides in Food and the Environment Technical Reports Series. (1989). No.295, Vienna.
- G. Chinnadurai, O. Basith, V. Murugesan, M. Mohamed Thasneem and R. Krishnamoorthy. (2021). "ASTUDY ON THE NATURALLY OCCURRING RADIONUCLIDES IN THE SOIL SAMPLES OF KOZHIKODE DISTRICT, KERALA". Journal of Natural Remedies. Vol. 21, No. 9(2).
- S.Y.L Mouandza, A.B. Moubissi, P.E. Abiama, T.B. Ekogo, G.H. Ben-Bolie. (2018).
 "Study of natural radioactivity to Assess of radiation hazards from soil samples collected from Mounana in south- east of Gaban" International Jurnal of Radiation Research, Volume 16, No 4.

- Gyuk,P.M; Habila S.S; Dogara, M.D; Kure N; Daniel, H. 1; Handan T.E. (2017). "DETERMINATION OF RADIOACTIVITY LEVELS IN SOIL SAMPLES AT CHIKUN ENVIRONMENT OF KADUNA METROPOLIS USING GAMMA RAY SPECTROMETROMETRY". Science World Jurnal. Vol 12(No 2).
- S. Harb, A. H. El-Kamel, A. I. Abd El-Mageed, A. Abbady, and Wafaa Rashed"CONCENTRATION OF U-238, U-235, RA-226, TH-232 AND K40 FOR SOME GRANITE SAMPLES IN EASTERN DESERT OF EGYPT", Proceedings of the 3rd.
- United Nations Scientific Committee on the Effects Atomic Radiation (UNSCEAR), 2008. Sources effects of ionizing radiation. Report to the General Assembly. New York, United Nation.
- Varshney R,Mahur AK, Sonkawade RG, Suhail M, Azam A, and Prasad R, 2010, "Evaluation and analysis of ²²⁶Ra, ²³²Th, ⁴⁰K and radon exhalation rate in various grey cements". Indian J Pure Appl Sci Physics, 48, 473–477.
- José A. dos Santos J., Jorge J. R.Ferreira C., Cleomacio M.da Silva, S. Vita S. and Romilton dos Santos A., 2005, "Analysis of the ⁴⁰K Levels in Soil using Gamma Spectrometry", Brazilian Archives Of Biology And Technology, 48, Special : 221-228.
- Xinwei L, 2005, "Natural radioactivity in some building materials of Xi'an, China". Radiat Meas,40(1),94–97.
- Beretka, J.; Mathew, P. J., 1985, "Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-products". Health Physics, 48(1):87-95.