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Abstract 

A continued fraction is a way of representing a real number by a sequence of 

integers. In this paper, we display an explanation from the continued fraction 

expansion in a more general state, and we present a new method to think about these 

continued fractions using tree graphs. Continued fractions, binary tree graphs, the 

topological index Z, and the Euclidean division algorithm are combined. In fact, we 

found a new combinatorial realization of the continued fractions with the binary trees 

and number of connected components of binary trees. Our aim is to show how this 

realization reflects the convergence of the continued fractions, the topological index 

Z, and as well as the Euclidean division algorithm. We think that this different 

perspective can be useful because the continued fraction depends on the order of 

vertices, which are the set of all positive rational numbers. Thus, the choice of the 

right sequence for vertices of binary tree has a significant impact on the build of 

continued fraction. The connection between binary tree, sub binary trees, and 

continued fractions will be explored. Findings are to establish results on sums of 

vertices, palindromic continued fractions. 

Keywords: Continued Fraction; Binary Tree Graph Method; Topological Index; 

Euclidean Division Algorithm. 

Introduction 

In graph theory, a tree 𝑇(𝐺)  =  (𝑉, 𝐸) is an undirected graph in which any two 

vertices (V) are connected by exactly one edge (E). Also, it is a connected graph that 

has no cycles and often has a pyramid shape, or a hierarchical data structure 

composed of vertices. The most used tree in computing is the binary tree (Valiente, 

2002). The binary tree is a nonlinear data structure that consists of vertices that have 

at most two children, and each child of a vertex is designated as its left or right child. 

It is a finite set of elements that is either empty or contains a root vertex and left- and 

right-subtrees that are also binary trees. This means, each vertex contains a "left" 

pointer, and a "right" pointer, where the root refers to the topmost vertex in the tree, 

and the left and right pointers recursively refer to smaller "subtrees" on both sides. A 

null pointer represents a binary tree with no elements - the empty tree (Parlante, 

2001). 
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The continued fractions theory has gained great importance during the past two 

hundred years. The key concept of this theory is on real numbers and is to give an 

approximation of different real numbers with rational numbers. A continued fraction 

is an expression gained via an iterative process of representing a number as the sum 

of its integer part and the reciprocal of another number, then this other number is 

written as the sum of its integer part and another reciprocal, and so on (Mennou, et 

al, 2021). 

In our work, we studied binary tree graphs from an abstract point of view and 

established binary tree graphs and connected the graphs which reflect the relations 

between the continued fraction, topological index z of binary tree, and the Euclidean 

division algorithm. We established a bijection between the continued fractions 

[𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛] and the binary tree graphs T(𝐺) [𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛, such that each 

continued fraction corresponds to a binary tree and the connected components of the 

binary tree, and vice versa. We explained what this combinatorial realization of the 

continued fractions means. We provided the basic concept of continued fractions in 

Section 2. Section 3 introduces a combinatorial interpretation of the binary tree, the 

topological index Z, and its associated binary tree continued fraction. In Section 4, 

we introduced the combination of the Euclidean division algorithm and its relation to 

the binary tree on rational numbers. In Section 5, we provided the main application 

and results discussions (i.e. the proof the theorem to confer clarification of why this 

combinatorial interpretation of continued fractions is so interesting). The conclusion 

directions are outlined in Section 6. 

Continued Fraction 

Definition 1:  An expression of the form 

𝒂𝟏 +
𝒃𝟏

𝒂𝟐 +
𝒃𝟐

𝒂𝟑 +
𝒃𝟑

𝒂𝟒+ . .

                                  (𝟏) 

is called a continued fraction. In general, all the numbers 𝑎1, 𝑎2, 𝑎3, … 𝑏1, 𝑏2, 𝑏3, …. 

may be any real or complex numbers, and the number of terms may be finite or 

infinite. In this paper, we will confine our discussion to simple continued fractions 

(H. S. Wall, 1948; C. D. Olds Sun Jose State College), which have the following 

formula 

𝒂𝟏 +
𝟏

𝒂𝟐 +
𝟏

𝒂𝟑 +
𝟏

𝒂𝟒 +⋯

                          (𝟐) 

A much more convenient manner of writing (2) is: 
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𝒂𝟏 +
𝟏

𝒂𝟐  +

𝟏

𝒂𝟑  +
  …

𝟏

+𝒂𝒏
                    (𝟑) 

Let us start with an easy example. 

Example 1. If we are given a rational number  
30

13
 , where  

30

13
= 2 +

4

13
 

The integer 2 is called the integer part of  
30

13
 and the rational number 

4

13
 

is the remainder. Another way of writing the above equation would be 

𝟑𝟎

𝟏𝟑
= 𝟐 +

𝟏

(
𝟏𝟑
𝟒 )

 

Although it may seem strange at first sight, I prefer this way for that now we can 

continue our procedure with the fraction 
13

4
. This number is bigger than 3 and smaller 

than 4. In fact, we have 

𝟏𝟑

𝟒
= 𝟑 +

𝟏

𝟒
 

which means that 

𝟑𝟎

𝟏𝟑
= 𝟐 +

𝟏

𝟑 +
𝟏
𝟒

                                 (𝟒) 

Note that now the numerator of the remainder 
1

4
 is equal to 1. Therefore, if we repeat 

the same procedure again, we will replace a fraction 
1

4
  by 1 divided by its inverse 

4

1
 , 

but this would not change anything, since 
4

1
= 4, obviously. Thus, we can stop our 

construction as soon as the numerator of the remainder is 1. The expression in (1) is 

called the continued fraction expansion of  
30

13
. Since all numerators are equal to 1, we 

will usually just write [2, 3, 4] for the right-hand side of (1). There is nothing special 

here about the integers 30 and 13. We can compute such a continued fraction 

expansion for any rational number 
𝑝

1𝑞
, although we might need more than just two 

steps. 

The Binary Tree Graphs of Continued Fraction 

A common execution of binary trees uses vertices, which start with one vertex 

named a root, and add another vertex to the right or to the left, or on both sides. Then 

another is to the right or the left of the previous one and so on. A vertex that has no 

left and right vertex is called Leaf or a vertex with empty left and right subtrees. We 

are going to build binary trees out of vertices and edges. Take a certain number of 
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vertices 𝑣𝑖 , 𝑖 = 1,2, … . , 𝑛 and start by laying up a first vertex (a root). Then place 

down a second vertex either to the left or to the right of the first vertex and connect 

them by edge (path). You have the choice here; you can place down two vertices on 

both sides (left and right). Then place the third vertex either to the left or to the right 

of the second vertex. Again, you must choose. Continue by this method until you 

have used all the vertices and edges (Valiente, 2002; Parlante, 2001). We will define 

a "root-to-leaf path" in order to be a sequence of vertices in a tree starting with the 

root vertex and proceeding downward to a leaf (a vertex with no children). We will 

say that an empty tree contains no root-to-leaf paths (Parlante, 2001). The following 

binary tree in Figure (1) has exactly five root-to-leaf paths. 

 

 

Figure (1): Example of a Binary Tree. 

 

Now: Let us give a combinatorial interpretation of continued fractions. Every 

positive rational number q may be expressed as a continued fraction of the form  

𝒒 = 𝒂𝟎 +
𝟏

𝒂𝟏 +
𝟏

𝒂𝟐 +
𝟏

𝒂𝟑 +
𝟏

⋱ +
𝟏
𝒂𝒏

= [𝒂𝟎; 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝒏]             (𝟓)   

Where n and a0 are non-negative integers, and each subsequent coefficient ai is a 

positive integer. This representation is not unique because one has 

[𝒂𝟎; 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝒏−𝟏, 𝟏]=[𝒂𝟎; 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝒏−𝟏 + 𝟏] 

The 𝑛 − 𝑡ℎ convergent of the continued fraction expansion of q is given by  
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𝒑𝒏
𝒒𝒏
= 𝒂𝟎 +

𝟏

𝒂𝟏 +
𝟏

𝒂𝟐 +
𝟏

𝒂𝟑 +
𝟏

⋱ +
𝟏
𝒂𝒏

= [𝒂𝟎; 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝒏] 

It is well known that the 𝑝𝑛 and 𝑞𝑛 satisfy the recurrence relation: 

𝒑−𝟏 = 𝟏 , 𝒑−𝟐 = 𝟎 ,  𝒑𝒏 = 𝒂𝒏𝒑𝒏−𝟏 + 𝒑𝒏−𝟐 , for  𝒏 ≥ 𝟎. 

𝒒−𝟏 = 𝟎 , 𝒒 −𝟐= 𝟏,  𝒒𝒏 = 𝒂𝒏𝒒𝒏−𝟏 + 𝒒𝒏−𝟐 ,      for  𝒏 ≥ 𝟎. 

The binary tree contains every positive rational number exactly once, so does this 

sequence, where the denominator of each fraction equals the numerator of the next 

fraction in the sequence. Thus, each positive rational number q occurs as a vertex and 

has one outgoing edge to another vertex, its parent.  Recall that a binary tree T is a 

connected graph consisting of a finite sequence of vertices [𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛] with n ≥ 

1, such that 𝑣𝑖 and𝑣𝑗  share exactly one edge 𝑒𝑖𝑗 and this edge is either the left edge of 

𝑣𝑖 or the right edge of 𝑣𝑗 , for each 𝑖 =  1, . . . , 𝑛.    

Notice that, for every rooted tree one can associate a continued fraction in a natural 

way, as exemplified in Figure (2). We call this a binary tree continued fraction 

(Spier, 2020). 

 

Figure (2): A Rooted Binary Tree and its Associated Tree Continued Fraction. 
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Every real number can be expressed as a generalized of continued fraction expansion 

of form q given by:  

𝒒 = 𝒂𝟎 +
𝒃𝟏

𝒂𝟏 +
𝒃𝟐

𝒂𝟐 +
𝒃𝟑

𝒂𝟑 +
𝒃𝟒

⋱ +
𝒃𝒏
𝒂𝒏

 

We suppose that all numbers 𝑎0, 𝑎1, 𝑎2, … 𝑎𝑛 and 𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛 are positive 

integers. 

So, the 𝑛 − 𝑡ℎ convergent of  
𝑝𝑛
𝑞𝑛⁄  is given by:  

𝒑𝒏
𝒒𝒏
= 𝒂𝟎 +

𝒃𝟏

𝒂𝟏 +
𝒃𝟐

𝒂𝟐 +
𝒃𝟑

𝒂𝟑 +
𝒃𝟒

⋱ +
𝒃𝒏
𝒂𝒏

 

At this point, 𝑝𝑛 and 𝑞𝑛 satisfy the recurrence relation:  

𝒑𝟏 = 𝒂𝟏 , 𝒑𝟐 = 𝒂𝟐𝒑𝟏 + 𝟏  ,  𝒑𝒏 = 𝒂𝒏𝒑𝒏−𝟏 + 𝒑𝒏−𝟐  ,for 𝒏 ≥ 𝟐. 

𝒒𝟏 = 𝟏 , 𝒒𝟐 = 𝒂𝟐  , 𝒒𝒏 = 𝒂𝒏𝒒𝒏−𝟏 + 𝒒𝒏−𝟐  , for 𝒏 ≥ 𝟐. 

Now, if we go back to the example of a binary tree graph in Figure (2), the number 

of subsequence of vertices and edges is equal to the numerators and denominators of 

the continued fraction, where each integer 𝑎𝑖 corresponds to the vertices and 𝑏𝑖 to the 

edges of binary tree, 

T(𝑮)[𝒗𝟏, 𝒗𝟐, 𝒗𝟑, … 𝒗𝒏; 𝒆𝟏, 𝒆𝟐, … . , 𝒆𝒏−𝟏] = [𝒂𝟎, 𝒂𝟏, 𝒂𝟐, … 𝒂𝒏; 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, … 𝒃𝒏] 

In graph theory, a connected component of an undirected graph is a subgraph in 

which each pair of vertices relates to each other via an edge (path). The subgraphs 

𝑇1, . . . , 𝑇𝑛,  are connected components of the binary tree, which can be obtained by 

removing edges of the tree, for 𝑖 =  1, . . . , 𝑛 –  1. The connected components binary 

tree from the binary tree in Figure (1) above are:   
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Figure (3): Binary Tree and Connected Components of Binary Tree of Continued 

Fraction. 

 

Lemma: 1. If T1, … . , Tn,  are connected components of T(G), where 𝑇1(𝐺) ∩

𝑇2(𝐺)…∩ 𝑇𝑛(𝐺) =  ∅ then  

𝐓(𝐆) =⋃𝐓𝐢(𝐆)

𝐧

𝐢=𝟏

,     𝒊 = 𝟏,… . 𝒏 

In Figure (4) we have Five connected components 𝑇1(𝐺), . . . , 𝑇5(𝐺), where 

 𝑇1(𝐺) =(𝑣1, 𝑣2), 𝑇2(𝐺) =(𝑣3, 𝑣4, 𝑣5), 𝑇3(𝐺) =(𝑣6), 𝑇4(𝐺) =(𝑣7, 𝑣8), 

𝑇5(𝐺) =(𝑣9, 𝑣10, 𝑣11), and 𝑇1(𝐺) ∩ 𝑇2(𝐺) ∩ 𝑇3(𝐺) ∩ 𝑇4(𝐺) ∩ 𝑇5(𝐺) =  ∅. 

Consequently, by lemma 1           

𝑻(𝑮)  =⋃𝑻𝒊(𝑮)

𝟓

𝒊=𝟏

 

𝑻(𝑮) = 𝑻𝟏(𝑮) ∪ 𝑻𝟐(𝑮) ∪ 𝑻𝟑(𝑮) ∪ 𝑻𝟒(𝑮) ∪ 𝑻𝟓(𝑮) 

[𝒗𝟏, 𝒗𝟐, 𝒗𝟑, … 𝒗𝟏𝟏] = [𝒗𝟏, 𝒗𝟐  ∪ 𝒗𝟑, 𝒗𝟒, 𝒗𝟓  ∪ 𝒗𝟔  ∪ 𝒗𝟕, 𝒗𝟖 ∪ 𝒗𝟗, 𝒗𝟏𝟎, 𝒗𝟏𝟏]. 

2. If  𝑒𝑖𝑗 = 𝑣𝑖𝑣𝑗  is an edge of a graph T(G), then T(G) =  T(G) − 𝑒𝑖𝑗 + T(G) −

{𝑣i, 𝑣𝑗}. 

3. If 𝑣𝑖 is a vertex of a graph 𝑇(𝐺), then 𝑇(𝐺)  = 𝑇(𝐺) – 𝑣𝑖 + ∑ 𝑇(𝐺)– {𝑣𝑖𝑣𝑗𝑣𝑖𝑣𝑗
}, 

where the summation extends over all vertices adjacent to 𝑣𝑖. 

The binary tree T(𝐺)[𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛; 𝑒1, 𝑒2, … . , 𝑒𝑛−1] of the continued fraction 

[𝑎0, 𝑎1, 𝑎2, … 𝑎𝑛; 𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛] is: 
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(𝒗𝟏𝒗𝟐⏟
𝒂𝟏

, 𝒗𝟑, 𝒗𝟒, 𝒗𝟓⏟      
𝒂𝟐

, 𝒗𝟔⏟
𝒂𝟑

, 𝒗𝟕, 𝒗𝟖⏟  
𝒂𝟒

, 𝒗𝟗, 𝒗𝟏𝟎, 𝒗𝟏𝟏⏟      
𝒂𝟓

; (𝒆𝟏𝟑⏟
𝒃𝟏

, 𝒆𝟑𝟔⏟
𝒃𝟐

, 𝒆𝟔𝟕⏟
𝒃𝟑

, … , 𝒆𝟕𝟗⏟
𝒃𝟒

) 

Note: a binary tree that denoted by T(𝐺)[𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛], is a tree in which 

all the vertices are within distance 1 of a central path. In addition, a tree 

containing a path graph such that every edge has one or more endpoints in 

that path. So, in example of binary tree in Figure (3) If  𝑣1 = · · · = 𝑣𝑛= 1,

𝑇(𝐺) = (1, . . . , 1) is a path graph. Komatsu in (2020) have demonstrated 

that for n ≥ 1  𝑍(𝑇𝑖(𝐺)(𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛−1) = 𝑝𝑛−1 , the integer Z(G) is the 

topological index that defined as:   

𝒁 = ∑𝒑(𝑮,𝑹)

𝒎

𝑹=𝒐

 

Where p (G, R) is the number of methods for selecting R disjoin edges from G, for 

more information about topological index Z see (Komatsu, 2020; Hosoya, 2007). 

Theorem 1: for n ≥ 1,    𝑍(𝑇𝑖(𝐺)(𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛−1) = 𝑝𝑛−1 

where 𝑝𝑛−1is the numerator of the convergent of the continued fraction expansion  

𝒑𝒏−𝟏
𝒒𝒏−𝟏

= 𝒂𝟎 +
𝟏

𝒂𝟏 +
𝟏

𝒂𝟐 +
𝟏

𝒂𝟑 +
𝟏

⋱ +
𝟏
𝒂𝒏−𝟏

 

with 𝑔𝑐𝑑(𝑝𝑛−1, 𝑞𝑛−1)  =  1,  𝑎𝑖  ≥  1 (0 ≤  𝑖 ≤  𝑛 −  1). 

Corollary 1: Special cases with recurrence relations, if  𝑣1 = · · · = 𝑣𝑛= 𝑎, and  𝑒1 = · 

· · = 𝑒𝑛−1= 𝑏, where a and b are positive integers. Then, for a positive integer n 

consider the following sequence: 

𝒁((𝑻𝒊(𝑮) (𝒗𝟏, 𝒗𝟐, …… . , 𝒗𝒏⏟          
𝒏

; 𝒆𝟏, 𝒆𝟐, … . . , 𝒆𝒏−𝟏⏟          
𝒏−𝟏

) 

=  𝒁((𝑻𝒊(𝑮) (𝐚, 𝐚, …… . , 𝐚⏟        
𝒏

; 𝐛, 𝐛, … . . , 𝐛 ⏟      
𝒏−𝟏

) 

= 𝒖𝒏+𝟏 = 𝒂𝒖𝒏 + 𝒃𝒖𝒏−𝟏 , 𝒘𝒊𝒕𝒉 𝒖𝟎 = 𝟎 , 𝒖𝟏 = 𝟏 

Example 2: the example of a binary tree in Figure (3) above 

T(𝐺)[𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛; 𝑒1, 𝑒2, … . , 𝑒𝑛−1] the topological index Z(G) is Z 

(T(𝐺)[2,3,1,2,3; 1, 1,11]). Consequently, the corresponding continued fractions are: 
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𝟐 +
𝟏

𝟑 +
𝟏

𝟏 +
𝟏

𝟐 +
𝟏
𝟑

 = [𝟐, 𝟑, 𝟏, 𝟐, 𝟑]  =  
𝟖𝟒

𝟑𝟕
 

Then, the topological index Z is given by Z (T(𝐺)[2,3,1,2,3; 1, 1,11]) = 84. 

We established a bijection between the topological index Z(TG), continued fractions 

[𝑎1, 𝑎2, 𝑎3, . , 𝑎𝑛], and binary tree T(𝐺)[𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛; 𝑒1, 𝑒2, … . , 𝑒𝑛−1], where the 

connected components of binary tree in Figure 3 with 𝑣 vertices determined by the 

subsequence of binary trees, such that the number of connected components of the 

binary tree equals the numerator of the continued fraction  

[𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓] =[𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒, 𝑻𝟓] = [2,3,1,2,3]. 

Example 3: For more understanding, let us go back to the example 1 of continued 

fraction [2,3,4] =
30

13
 , we can establish the binary tree, the connected components of 

binary tree, and topological index Z(T(G) from this continued fraction, where 

𝟐 +
𝟏

𝟑 +
𝟏
𝟒

 = [𝟐, 𝟑, 𝟒]  =  
𝟑𝟎

𝟏𝟑
 

Hence, the topological index Z (T(𝐺)[𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛; 𝑒1, 𝑒2, … . , 𝑒𝑛−1 ] ) = Z 

(T(𝐺)[2,3,4; 1, 1]) = 30, So,  [𝑎1, 𝑎2, 𝑎3] =[2,3,4] = [𝑇1, 𝑇2, 𝑇3], where 𝑇1 =

(𝑣1, 𝑣2), 𝑇2 = (𝑣3, 𝑣4, 𝑣5), and𝑇3 = (𝑣6, 𝑣7, 𝑣8, 𝑣9). T(𝐺) =

(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9). Then, as a result the binary tree and connected 

components of the binary tree can be established as shown in Figure (4). 

 

 

Figure (4): Binary Tree and Connected Components of Binary Tree. 
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Let us prove the following theorem in order to confer clarification of why this 

combinatorial interpretation of continued fractions is so interesting. 

Theorem 2. If 𝑇𝑖(𝐺) denotes the number of connected components of binary tree of 

𝑇(𝐺) then  

[𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … 𝒂𝒏] =
𝑻𝒊(𝑮[𝒗𝟏, 𝒗𝟐, 𝒗𝟑, … 𝒗𝒏])

𝑻(𝑮[𝒗𝟏, 𝒗𝟐, 𝒗𝟑, … 𝒗𝒌])
 

and the right-hand side is a reduced fraction. 

Convergence. Then 𝑛 − 𝑡ℎ convergent of the continued fraction [𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛] is 

the continued fraction [𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛] for 1 ≤   𝑛 ≤  𝑘. By Theorem 2, we have 

that the numerator of 𝑛 − 𝑡ℎ convergent is the number of connected components of 

tree 𝑇𝑖(𝐺)[𝑣1, 𝑣2, … 𝑣𝑛] of  𝑇(𝐺)[𝑣1, 𝑣2, … , 𝑣𝑘] and the denominator of the 𝑛 − 𝑡ℎ 

convergent is the number of the vertices of 𝑇(𝐺)[𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛]. It is well known 

that the 𝑛 − 𝑡ℎ convergent of the continued fraction 𝑇𝑖[𝑎1, 𝑎2, 𝑎3, … 𝑎𝑘] is equal to 
𝑝𝑛
𝑞𝑛⁄ . 

Theorem 3. For every convergent 
𝑝𝑛
𝑞𝑛⁄  of a rational number

𝑞
𝑏⁄ : 

𝒑𝒏
𝒒𝒏
=
𝒂𝒏𝒑𝒏−𝟏 + 𝒑𝒏−𝟐
𝒂𝒏𝒒𝒏−𝟏 + 𝒒𝒏−𝟐

                            (𝟔) 

For 0 ≤ 𝑛 ≤ 𝑘, defining 𝑝𝑛−1 = 1; 𝑞𝑛−1 = 0.   

Bracha in (1974) have shown that for a limited class of functions, such as quadratic 

or cubic equations, a solution can be approximated by a continued fraction of the 

form 

𝑨𝒊
𝑩𝒊
=

𝒒𝟏
𝒃𝟏 +

𝒒𝟐
𝒃𝟐 +

… .
𝒒𝒏

𝒃𝒏 + 𝒇𝒏+𝟏
              (𝟕) 

where 𝐴𝑛 and 𝐵𝑛 are determined from the recursion 

𝑨𝒊 = 𝒃𝒊𝑨𝒏−𝟏 + 𝒒𝒊𝑨𝒏−𝟐 

𝑩𝒊 = 𝒃𝒊𝑩𝒏−𝟏 + 𝒒𝒊𝑩𝒏−𝟐    𝒊 = 𝟐, 𝟑,…….   (𝟖) 

with initial values: 

𝑨𝟎 = 𝟎,    𝑨𝟏 = 𝒒𝟏 

𝑩𝟎 = 𝟏,   𝑩𝟏 = 𝒃𝟏 . 

Following the analysis of Wynn  (P. Wynn, 1964; G. H. Hardy and E. M. Wright, 

1960), we define a continued fraction as a sequence of bilinear transformations of the 

form: 
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𝒖𝒏 =
𝜶𝒏+𝟏

𝟏 + 𝒖𝒏+𝟏
         𝒏 = 𝟏, 𝟐,… , 𝒏 − 𝟏,          (𝟗) 

where 𝑓𝑛(𝑥) is a function of 𝑥 and 𝑝𝑘, 𝑞𝑘 are constants, the resulting continued 

fraction is:   

𝒖𝟏 =
𝒑𝟏
𝒒𝟏 +

𝒑𝟐
𝒒𝟐 +

… .
𝒑𝒏

𝒒𝒏 + 𝒖𝒏+𝟏
=
𝑨𝒏 + 𝒇𝒏+𝟏𝑨𝒏−𝟏
𝑩𝒏 + 𝒇𝒏+𝟏𝑩𝒏−𝟏

  𝒏 = 𝟏, 𝟐, 𝟑… (𝟏𝟎) 

where the functions 𝐴𝑖and 𝐵𝑖satisfy the recursion (10). 

Division Algorithm 

Any pair 𝑏0 > 𝑏1 of positive integers generates a decreasing sequence 𝑏0 > 𝑏1 > 𝑏2· 

· · in the set N of all positive integers 

𝒃𝟎  =  𝒂𝟎𝒃𝟎 + 𝒃𝟏, 

𝒃𝟏  =  𝒂𝟏𝒃𝟐 +  𝒃𝟐,                       (11) 

𝒃𝟑 = 𝒂𝟐𝒃𝟐 + 𝒃𝟑, 

⋮ 

𝒃𝒏−𝟐  =  𝒂𝒏−𝟐𝒃𝒏−𝟏 +  𝒃𝒏, 

𝒃𝒏−𝟏  =  𝒂𝒏−𝟏𝒃𝒏 , 

Here 𝑎𝑖 ∈  𝑁, 𝑖 =  0, 1, . . .. Any decreasing sequence in N is finite. So, there exists n 

∈ N such that 𝑏𝑛−1  =  𝑎𝑛−1𝑏𝑛, hence the algorithm stops at this step. Reading the 

equations in (11) from the up to the equation 𝑏𝑛−2  =  𝑎𝑛−2𝑏𝑛−1 +  𝑏𝑛, preceding the 

last equation 𝑏𝑛−1  =  𝑎𝑛−1𝑏𝑛, we get that any common divisor of 𝑏0 and 𝑏1 divides 

𝑏𝑛. Reading the same equations from the down to the up, we get that 𝑏𝑛 is a common 

divisor of 𝑏0 and 𝑏1. Thus, 𝑏𝑛 is the greatest common divisor 𝑑 =  (𝑏0, 𝑏1) for 

𝑏0and 𝑏1. This is the standard form of Euclidean algorithm that provides a basis for 

multiplicative Number Theory.  To discuss the role played by the coefficients 𝑎𝑚 in 

(11), we consider (11) as a system of linear algebraic equations with integer 

coefficients 𝑎0,  𝑎1, 𝑎,.... Excluding unknowns 𝑏𝑚 from (11), we obtain 
𝑏𝑚−1

𝑏𝑚
 =

𝑎𝑚−1  +  
1

𝑏𝑚
𝑏𝑚+1
⁄

+ 1, 𝑚 =  1, 2, . . ., which clearly yields the development of 
𝑏0

𝑏1
 into 

a finite regular continued fraction (Khrushchec, 2008; Khrushchec, 2005). 

Consequently, the Euclidean algorithm has a close relationship with continued 

fractions (Vinogradov, 2016). The sequence of equations can be written in the form 

𝒑

𝒒
 =  𝒂𝟎 + 

𝒃𝟎
𝒃
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𝒃

𝒃𝟎
 =  𝒂𝟏 +

 𝒃𝟏
𝒃𝟎
, 

𝒃𝟎
𝒃𝟏
= 𝒂𝟐 + 

𝒃𝟐
𝒃𝟏
, 

⋮ 

𝒃𝒏−𝟐
𝒃𝒏−𝟏

 =  𝒂𝒏 +
 𝒃𝒏
𝒃𝒏−𝟏

 

⋮ 

𝒃𝑵−𝟐
𝒃𝑵−𝟏

= 𝒂𝑵 . 

The last term on the right-hand side always equals the inverse of the left-hand side of 

the next equation. Hence, the first two equations may be combined to form 

𝒑

𝒒
 =  𝒂𝟎 + 

𝟏

𝒂𝟏 +
𝒃𝟎
𝒃𝟏

 

The final ratio of remainders 
 𝑏𝑛

𝑏𝑛−1
 can always be replaced by using the next equation 

in the series, up to the final equation. Then the result is a continued fraction 

𝒒

𝒃
= 𝒂𝟎 +

𝟏

𝒂𝟏 +
𝟏

𝒂𝟐 +
𝟏

𝒂𝟑 +
𝟏

⋱ +
𝟏
𝒂𝑵

= [𝒂𝟎; 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝑵]      (𝟏𝟐) 

This illustrates that any rational number equals the value of a regular continued 

fraction (12), where  𝑎0 is an integer (𝑎0 ∈ Z) and  𝑎1,  𝑎2, 𝑎𝑛−1 are positive integers. 

The feature of such a representation compared with common decimal or dyadic 

representations is that it is global and does not reflect properties of the base. Hence, 

the continuum R of real numbers can be parameterized via a sequence of integer 

parameters {𝑎𝑚}𝑚 ≥0 restricted to 𝑎0 ∈  𝑍, 𝑎𝑚  ∈  𝑁 𝑖𝑓𝑚 ≥ 1 (Khrushchec, 2008; 

Krushchec, 2005). 

Example 4. The continued fraction [2, 3, 1, 2, 3]  =  
84

37
 has convergence 

[𝟐, 𝟑, 𝟏, 𝟐, 𝟑]  =  
𝟖𝟒

𝟑𝟕
   , [𝟐;  𝟑;  𝟏;  𝟐]  =

𝟐𝟓

𝟏𝟏
,  [𝟐;  𝟑;  𝟏]  =

𝟗

𝟒
,  [𝟐;  𝟑]  =

𝟕

𝟑
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Let us compute the continued fraction. The Euclidean algorithm on the left gives the 

continued fraction [2, 3, 1, 2, 3]  =  
84

37
. The algorithm on the right gives the even 

continued fraction  [2, 4, −4, 2, −2]  =  
84

37
. 

𝟖𝟒 =  𝟐 . 𝟑𝟕 +  𝟏𝟎                          𝟖𝟒 =  𝟐 . 𝟑𝟕 +  𝟏𝟎 

𝟑𝟕 =  𝟑 . 𝟏𝟎 +  𝟕                             𝟑𝟕 =  𝟒 . 𝟏𝟎 + (−𝟑) 

𝟏𝟎 =  𝟏 . 𝟕 +  𝟑                               𝟏𝟎 =  (−𝟒)(−𝟑) + (−𝟐) 

𝟕 =  𝟐 . 𝟑 +  𝟏                               −𝟑 =  𝟐(−𝟐) +  𝟏 

𝟑 =  𝟑 . 𝟏                                         −𝟐 =  (−𝟐)𝟏 

An Application 

The Euclidean algorithm also has a relationship to the binary tree on the rational 

numbers. Since it can be employed to order the set of all positive rational numbers 

into a binary search tree, it can see this division algorithm on the level of the tree 

graph, and its connected components (subgraphs) as illustrated in Figure (5). In this 

figure, the numbers represent the number of vertices of the binary tree from the root 

to the end (leaves). The corresponding binary trees are the following. 

 

Figure (5): Binary Tree and Sub Binary Trees Continued Fraction. 

 

We point out that the remainders can also be realized as numbers of connected 

components of binary tree if one starts counting at the first vertex (root) until the last 

vertex (leaves) of the binary tree, and the division algorithm can be seen as a 

sequence of identities of binary tree as follows. 
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Figure (6): The Division Algorithm in Terms of Sub Binary Tress of Binary Tree. 
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Let’s go back to our example 1 of the continued fraction [2, 3, 4]  =  
30

13
.  

To compute the continued fraction starting from the rational number 
30

13
 , we used the 

following division algorithm. 

𝟑𝟎 =  𝟐 ·  𝟏𝟑 +  𝟒 

𝟏𝟑 =  𝟑 ·  𝟒 + 𝟏 

𝟒 =  𝟒 ·  𝟏. 

The binary tree on the rational numbers used division algorithm is 

 

 

Figure (7): Binary Tree and Sub Binary Tree Continued Fraction. 

 

The division algorithm can be seen as a sequence of identities of binary tree as 

follows: 
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Figure (8): The Division Algorithm in Terms of Sub Binary Tress of Binary Tree. 

 

Conclusions 

We have seen that there is great combinatorial between the binary trees and the 

continued fractions, which can be understood by viewing such continued fractions as 

paths in the binary tree. Using the possible tree graphs makes interesting the 

combinatorial interpretation realization of convergent of the continued fractions with 

the binary trees and the number of connected components of the binary trees on 

rational numbers. In addition, this realization reflects the convergence of continued 

fractions with the topological index Z and the Euclidean division algorithm as well.  
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