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Abstract

The exact analytical solutions towards investigating the dynamic analysis of
extensional-flexural coupled vibration responses for asymmetric composite laminated
rectangular beams under various harmonic axial and bending forces are presented.

Three governing coupled differential equations and related boundary conditions were
derived from the variational form of Hamilton’s principle. The formulations are based
on the first order shear-deformable beam theory, account for the effects of rotary
inertia, Poisson’s ratio, and structural bending-extensional coupling coming from
material anisotropy. The resulting coupled equations for asymmetric composite beams
were exactly solved and closed-form solutions for extensional-flexural coupled
response were obtained for different boundary conditions. Numerical examples were
performed for antisymmetric cross-ply and angle-ply laminated composite beams in
order to investigate the effects of transverse shear deformation, fibre orientation angle
on coupled natural frequencies, quasi-static, and steady state dynamic responses.

Results for dynamic bending and axial displacements are discussed in detail and the
validity and accuracy of the present solutions were verified against published exact
and finite element solutions.

Keywords: Analytical solution; extensional-flexural coupled response; antisymmetric
laminated beams.

Introduction and Objective

Structural members made of composite laminates are increasingly being used in
different engineering applications due to their high strength-to-weight and stiffness-
to-weight ratios. Multi-layered composite beams are widely used in aerospace,
mechanical and civil engineering. Due to their excellent features, composite laminated
beams are of the most important structural members used in aircraft wings and fuselage
structures, helicopter blades, vehicle axles, propellant and turbine blades, ship and
marine structural frames.
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In these applications, composite laminated beams are frequently subjected to cyclic
dynamic loading (e.g., harmonic excitations). Sources of such forces include
aerodynamic effects, hydro-dynamic wave motion and wind loading.

In addition, harmonic forces may arise from unbalanced rotating machinery and
propellants, and reciprocating machines. In such applications, composite laminated
beams under harmonic forces cause an undesirable vibration and they are prone to
fatigue failures.

Fatigue failures are increasingly becoming important to the design of the composite
structural members. Under harmonic forces, the transient component of dynamic
response is more effective at the beginning of the excitation. Because it has a tendency
to dampen out quickly, it is of no importance in evaluating the fatigue life of the
composite laminated beam. On the other hand, the steady state dynamic response lasts
for a long time hence, it is of particular importance to fatigue life and that is the reason
for tackling it within the present study.

Thus, the goal of this study is to develop an efficient solution, which captures and
isolates the steady state response. The present analytical closed form solution can also
capture the quasi-static response and predict the eigen-frequencies and eigen-modes
of the composite antisymmetric laminated beam.

Although the dynamic analysis of the composite laminated antisymmetric beams,
which is based on different beam theories, has been the subject of significant research
studies during the past few years, most of these studies were restricted to free
vibrations of composite antisymmetric laminated beams.

Numerous studies developed and investigated the analytical exact solutions and finite
element techniques for free vibration response of composite symmetric and
antisymmetric laminated beams. Among the mare Khdeir and Reddy (1994) who
developed an exact solution, which is based on higher-order shear deformation theory
to study the free vibration behaviour of cross-ply rectangular beams with arbitrary
boundary conditions. Banerjee (1998) investigated the free vibration of axially composite
laminated Timoshenko beams by using dynamic stiffness matrix method. His exact dynamic
stiffness matrix formulation exhibited the coupling between bending and torsion and captured
the effects of axial force, shear deformation, and rotatory inertia.

The differential quadrature method is used to obtain the numerical solution of the
governing differential equations for symmetrically and antisymmetrically composite
beams with rectangular cross-section and for various boundary conditions. Based on
the first order shear deformation theory, Chakraborty et al. (2002) used the finite
element to analyse the free vibration and wave propagation in composite laminated
beams having symmetric and asymmetric ply stacking. Tahani (2007) presented a
displacement-based layer wise beam theory and applied it to cross-ply antisymmetric
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(0°/90°) and (0°/90°/0°) laminated beams subjected to sinusoidal load. Jun et.al. (2008,
2009) developed the exact dynamic stiffness matrix method of free vibration analyses
of arbitrary laminated composite beams based on first order shear deformation,
trigonometric shear deformation, and higher-order shear deformation beam theories.
The effects of shear deformation, rotary inertia, Poisson’s ratio, axial force and
extensional-bending coupling deformations are considered in their mathematical
formulations.

Hjaji et.al. (2016) developed a super-convergent one-dimensional finite beam element
with two-nodes for the steady state dynamic flexural response of symmetric laminated
composite beams under bending harmonic forces. The new beam element based on the
exact shape functions, which satisfy the dynamic coupled governing filed equations,
is applicable to symmetric laminated composite beams and accounts for the effects of
shear deformation, rotary inertia, and Poison’s ratio.

Hjaji et.al. (2017) investigated the analytical closed-from solutions for the flexural
dynamic analysis of symmetric laminated composite beams subjected to transverse
harmonic forces. Based on the first-order shear deformation theory in which the
influences of shear deformation, rotary inertia, Poisson’s ratio, and fibre orientation
are incorporated in their formulations.

Recently, Horta et.al (2022) investigated the free vibration analysis of laminated
composite beams using the finite element method, in which the two-noded
Timoshenko beam element model formulated via strain gradient.

Based on finite element method with dynamic finite element techniques, Kashani and
Hashemi (2022) presented the free-coupled bending-torsion vibration analysis of
prestressed composite laminated beams subjected to static axial force and end moment.

While most of the previous studies focused on free vibration analysis of composite
laminated beams, the dynamic analysis of composite laminated beams under dynamic
forces was accounted for in a few studies. To the best of the authors’ knowledge, no
study reported analytical closed-form solutions for the dynamic analysis of composite
antisymmetric laminated Timoshenko beams under harmonic forces. Thus, the present
study is to formulate the exact closed-form solutions for antisymmetric laminated
beams of rectangular cross-sections subjected to harmonic axial and bending forces.
The coupled dynamic governing equations and related boundary conditions for the
composite antisymmetric laminated beams will be obtained by using Hamilton’s
variational principle. The effects of shear deformation, rotary inertia, Poisson’s ratio
and fibre orientation on natural frequencies, quasi-static and steady state dynamic
responses are to be investigated too. Several computer programs coded in Maple
software by the researchers will be used to compute the numerical results. The present
exact solutions are suitable and efficient in analysing the forced bending vibration of
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composite antisymmetric laminated beams subjected to harmonic axial and bending
forces.

Mathematical Formulation

The mathematical model of the fully coupled antisymmetric composite Timoshenko
beam in this study is based on the following assumptions:

The material of composite beam is linearly elastic.

Each lamina is thin and perfectly bonded.

Displacements, strains, and rotations are assumed small.

The beam cross-section is rigid; in-plane or out-of-plane warping deformations

are taken into account.

5. Plane sections normal to the beam axis remain plane before deformation, but
not necessarily remain normal to the beam axis after deformation.

6. Only the steady state dynamic response is sought.

7. Damping effect is neglected.

e

1. Kinematic Relations

A prismatic multi-layered composite beam with length L, thickness h , and width b,
as shown in Figure (1), was considered. The right-handed Cartesian coordinate system
(X,Y,Z) was defined on the mid-plane of the composite beam, the X axis was
coincident with the beam axis, and Y , and Z were coincident with the principal axes
of the cross-section. Since the cross-section of the composite beam have two axes of
symmetry (i.e., Yand Z), the coupling between bending and torsion responses due to
the section non-symmetry is neglected i.e. the present study is restricted to flexural
behaviour in the X — Z plane. Thus, the displacement fields for a general point p(x, z)
of height z from the centroidal axis of composite beam based on the first order shear
deformation theory are assumed to take the form:

u,(x,z,t) = ulx,t) + z ¢y, vy(x,z,t) =0, and wy(x,zt) = w(x,t) (1-3)

in which u(x,t) and w(x, t) are the axial and transverse displacements of a point on
the mid-plane in the X and Zdirections, u,(x,z,t) and w,(x, z,t) are the axial and

transverse displacement, respectively, v,(x,z,t) is the lateral displacement, and

¢, (x, t) is the rotation of the normal to the mid-plane about the Y axis, where x and
t are spanwise coordinate and time, respectively.
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Figure (1): Laminated Composite Beam with Undeformed and Deformed
Configurations.

2. Strain-Displacement Relations

The strain relations of the composite beam associated with the small-displacement
theory of elasticity are given as:

Ex X OU,/0X = &xo + ZKy,  Viz = OW,/0x + ¢y (4)

where ¢,, = du/dx = u' is the mid-plane axial strain, k, = d¢,/dx = ¢, is the
bending curvature, and the primes denote the differentiation with respect tox.

3. Constitutive Equations for Anti-symmetric Laminated Beam

The laminated beam constitutive equations based on the first order shear deformation
theory can be obtained by using the classical lamination theory to give:

(N A1y A1z Ase Bi1 Bz Byl  (Ex0)
Ny A1 Az Az Biz Bz By €yo

) Nyy . _|416 A26 Aes Bic Bze Bes <ny \ (5)
M, Byy Biz Bie D11 D12 Digs Ky
M, Bi; By Bjys D1z Diz D k,

M,y) ., 'Bie Bz Bes Dic Dzs Dogleyg \Kxy) oo

where Ny, N, and N,, are the in-plane forces, M,, N, and M,, are the bending and
twisting moments, &,,, £, and y,, are the mid-plane strains, k,, k, and k,,, are the
bending and twisting curvatures, respectively, 4;;, B;; and D;; denote the extensional,

bending-extensional coupling and bending stiffness, respectively, and are expressed as
functions of laminate ply orientation and material properties:

h/2
A;j,By,Dy = |

_h/z[ail-](l,z, z®)dz , (fori,j=1,2,6) (6)
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where @ij are the transformed reduced stiffnesses and are given by the following
expressions Jun et.al, (2008):

Q11 = Q11¢* + 2(Q12 + 2Qg6)s%c? + Qqp8*
Q12 = (Q11 + Q22 — 4Qg6)s%c?+ Qr2(s* + ¢*)
Qo2 = Q115" + 2(Q12 + 2Qg6)s%c? + Qqpc*
Q16 = (Q11 — Q12 = 2Qe6) S ¢* + (Q12 — Q22 + 2Qg6)s°C
Q26 = (Q11 — Q12 — 2Qge)s°c + (Q12 — Q22 + 2Qe6) S €°
Qo6 = (Q11 + Q22 — 2Q12 — 2Qg6)5%c?+ Qo (s* + ¢*)

where f is the angle between the fibre direction and longitudinal axis of the composite
beam Figure (1), s = sinfB, c=cosfB, and Q,1, Q1,, Q,, and Q. are the stiffness
constants and are given in terms of engineering elastic constants by:

Q11 = E11/(1 —v13031) , Q12 = V21 E11/(1 — v12051) = V13 Bz /(1 — v1505,),
Q22 = Ezp /(1 —v15v51), Q6 = G12.

where the constants E;;,and E,, are Young moduli, G;,, G,3,and G,5 are shear
moduli, and v;,,v,; are Poison ratios measured in the principal axes of the layer.

The present formulation is based on first order shear deformation theory in which the
effect of transverse shear deformation due to bending is incorporated, then, the
transverse shear force per unit length Q,., is given by Vo and Thai (2012):

Qyz = Ass¥Vx, = Ass(OW/0x + ¢,) = Ass(W' + @,) (7

in which Asc = kf_h}{/zz Qss dz, where Qss = Gy3¢? + G352, k is the correlation

shear factor and is taken as 5/6 to account for the parabolic variation of the transverse
shear stresses.

The composite laminated beam is subjected to axial and bending dynamic forces.
Then, the lateral in-plane forces and moments inYdirection are negligible and set to
zero, i.e., Ny, = Ny, = M,, = M,,, = 0. In order to account for Poisson’s ratio, the
mid-plane strains &,,,,,, ¥y, and curvatures k,,,, k,,, are assumed to be non-zero. Thus,
equation (5) can be rewritten as:

{Nx} _ le Ell] {gxxo} _ 211 Ell] {u’} (8)
=|= — = |5 = '
M),y |Byy Dygl, ' Rx oy 1By Dyql, , (@45

yy’

where:
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Iﬂ_n fjn] Z[An B11] .
Bi1 D11 Bi1x D1y 2%2

A22 A26 BZZ BZ6 - A12 BlZ

] A26 A66 BZ6 B66 A16 Bl6
BZZ BZ6 DZZ D26 BlZ D12 .

B66 D26 D66 B16 D16

[A12 A16312 Bl6
BlZ BIGD12 D16

If the Poisson ratio effect is ignored, the coefficients (4,4, B;;, D141) in equation (8)
are then replaced by the laminate stiffness coefficients (41, B11, D11), respectively.

Energy Expressions
The total kinetic energy Tof the laminated composite beam is given by:
h/2 . . . 1L . . .
f Lhp2P [ + 2 + W3] bdzdx = 3o [0 + I,w? + 21,u¢, +
13¢x] bdx ©)

in which the dot denotes the derivative with respect to time, and the densities
I, I, and I of the composite beam are introduced by:

h/2
L, I, I3 = f pl1,z 2% dz
~h/2

= ouli = 210), (G = 20)/2, G = 780 /3)

k=1
where p,, (for n = 1,2,3) are the mass densities of the k" layers.

The total strain energy U, of the laminated composite beam are given by:

_

L
Us = Ef N xExxo T Myky + szyxz] bdx
0

l\JIb—\

L
f [Ny’ + Myl + Qs (W' + )] bl
0

From Equations (6) and (8), by substituting into above equation, yields:
_ l L— r2 D PN Y r2 r2 ! 2
Us =3 [y [Annw'? + 2B11u' @y + D11 §5* + Ass(W' 2 + 2w/, + ¢3)] bdx  (10)
The work done V by the applied harmonic axial and bending forces can be written as:
L
V=—[,la:(x, hulx,t) + q,(x, )w(x, t) + m,(x, ) P, (x, t)] bdx —

[P (xe, OU(xe, O] — [P (xe, OW(Xe, D] — [My(x,, O pr(x., O] (11)
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Expressions for Force Functions

The composite laminated beam shown in Figure (2) is assumed to be subjected to (a)
distributed harmonic forces and bending moments within the beam and (b)
concentrated harmonic forces and bending moments at beam both ends, i.e.,

4 (x, ), q,(x,t), m,(x,t) = [G,(x), G,(x), M, (x)]e"™ (12)
P,(xe, 1), Py (xe, ), My (x, 1) = [Py(x), P,(x), M,(x)]e"* ,for x,=0,L (13)

where Q is the circular exciting frequency of the applied forces, i = v/—1 is the
imaginary constant, g,(x,t) and q,(x,t) are the distributed axial and transverse
harmonic forces, m, (x, t) is the distributed harmonic bending moment, P, (x,, t) and
P,(x,,t) are the concentrated axial and transverse harmonic forces, M, (x,,t) is the
concentrated harmonic bending moment, all forces and moments are applied at beam
ends (x, = 0,L).

z
A
P,(L.t)
z(o t) (X t)
MX(O;) : UJ ] U_l INENERENEE "%/'x(L,t)
—Je e Je Je Te Je e Fe e Je Te .y
P.OY meD. | e WA

Figure (2): Composite Beam Under General Axial, and Bending Harmonic Forces.

Expressions for Displacement Functions

Under the given applied harmonic forces, the displacement functions corresponding to
the steady state component of the dynamic response are assumed to take the forms:

u(x, t),wx, t), ¢, (x,t) = [U(x), W(x), @,(x)]e"™ (14)

in which U(x), W(x), and @, (x) are the amplitudes for axial translation, bending
displacement, related bending rotation, respectively. Since the present formulation is
intended to capture only the steady state dynamic response of the structural composite
beam, the displacement fields postulated in (14) neglect the transient component of the
dynamic response.
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Variational Principle

The dynamic differential coupled equations for composite antisymmetric laminated
beam subjected to harmonic forces can be derived using Hamilton’s principle, which
can be written as:

f:f S(T—Mdt =0, for du(xt) = dw(xt) = 8¢, (x,t) =0att =
tl and tz (15)
where t; and t, are two arbitrary time variables and § denotes the first variation.

From equations (12)-(14) and by substituting into energy expressions in (9)-(11), the
resulting equations into equation (15), performing integration by parts, the governing
equations of motion are obtained in matrix form as:

(1,9% + 4,,D% 0 (I,9% + B, D?) U(x)
0 — (1,92 + A55D?) —AssD W(x) =
(1,92 + B{,D?) —AssD (I39% — Ass + D11 D?) ], 5 (Px(0) )5,
_qx(x)
q,(x) (16)
ﬁlx(x) 3x1

The related boundary conditions arising from the variational principle are:
[bA11U’ (%) + bB13 @5 (%) — P,(x)]g6U(x)|g =0  (17)
[bAss (W' (x) + @,(x)) — P,(x)][g6W(0)|g=0  (18)
[bB11U' (x) + bD11®;(x) — M ()]56®,(x)]5 = 0 (19)

where D is the differential operator, i.e., D = d/dx,D? = d?/dx?. Equations in (16)
govern the coupled extensional-flexural dynamic response of composite
antisymmetric laminated beam under harmonic forces. The present study is focused
on the exact closed-form solutions for the steady state dynamic response governed by
these coupled equations.

It is noted that, the above extensional-flexural coupled equations in (16) with related
boundary conditions (17-19) are similar to those derived by Jun et.al. (2008) for free
vibration of laminated composite beams when the axial compressive force effect is
omitted. The present treatment differs from that in Jun et al. in two respects:

(1) while Jun et.al. (2008) investigated the free vibration analysis of laminated
composite beams, the present solution provides the complete steady state
dynamic response under general harmonic bending forces with a given exciting
frequency.
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(2) in the present study, the closed form solutions of steady state dynamic
responses are derived in exact expressions, while in Jun et.al. (2008) provided
only an analytical solution using dynamic stiffness matrix for determining the
natural frequencies and buckling loads for the composite beams.

Exact Solution for Coupled Field Equations
1. Homogeneous Solution

The homogeneous solution of the extensional-flexural coupled Equations in (16) is
obtained by setting the right-hand side of the equations to zero, i.e. g, (x) = g,(x) =
m, (x) = 0. The homogeneous solution of the displacement functions is then assumed
to take the form:

(Xn(X))1x3 = (Up(x) Wpir(x) DPyp(x))1x3 = (C)1x3 €™*, fori=
1,2,3,..,6 (20)

where (x(x))ix3 = (Up(x) Wp(x) ®P,pn(x))1x3 is the vector of extensional,
flexural displacement and bending rotation functions, and (C);x3 =
(€10 C2i C3i);45 IS the vector of unknown constants. From equation (20), by
substituting into the equations in (16), for non-trivial solution, the determinant of the
bracketed matrix is set to vanish leading to the sixth-order polynomial equation of the
form:

Bsm? + Bzmi + pomi + B, =0 (21)

where B, = Q*I; [92(11]3 - 122) — L Ass],
B, = Q? [9211(11511 + 131411 - 212§11) + A55(111392 - 12292 - 121411],
Bs = Q*[I;Dy1,(Ass + A11) + I3A11Ass — I Bf; — 21,B;,455)], and
Ba = Ass(l‘TnEu - §121)

The characteristic equation (21) has six distinct roots m; (fori = 1,2,3,....,6). For
each root m;, there corresponds a set of constants (C); 1x3 = (€1i €2i €3,i);1x3. BY
back-substitution into the homogeneous coupled system of equations in (20), one can
relate constants ¢, ; and c, ; to constants cs; through c¢;; = G ;c3; and ¢ ; = Gy ;c3;;,
(fori = 1,2,3,....,6), respectively, where G, ; = —(Byym? + 1,Q0%) /(A;ym? + 1,Q?),
and G,; = —Assm;/(Assm? + 1,0%).

The homogeneous solutions for extensional displacement Up(x), flexural
displacement W;,(x) and related bending rotation @, (x) are obtained as:

{Xn(®)}3x1 = [Gl3x6[E(X)]6x6{Clex1 (22)
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_ G

in which [G]5x¢ = Gae , [E(x)]6xe is a diagonal matrix
3

G1,1 G1,2
6. {or
1 1 1 X6
consisting of the exponential functions e™* (fori = 1,2,3,....,6), the vector of

unknown integration constants (C);xg = (€31 €32 - C36)156 IS to be
determined from the problem boundary conditions.

2. Particular Solution for Uniform Member Harmonic Forces

For a composite antisymmetric laminated beam under uniform distributed axial and
bending harmonic  forces (g, (x), G, (x), My (x))e™ ¥ = (qy, G, My)e™ ¥,  the
corresponding particular solution (x,)i1x3 =(Up Wy Pxp),43 of the coupled
equations in (16) is assumed to take the form:

Xphix3 =(Up Wp @ip)ixs =(A1+B1x Az +Byx A3+ Bsx)y,z (23)

From expressions in equation (24), by substituting into equation (16), leads to:

— _ax I_Z IZﬁx"'Ilmx _qz Izax"'llmx
(Xp)ixs = 1192+11 (92[1§—1113]—11A55) b1, Q2 <92[1113—1§]—11A55>)1X3 (24)

The complete exact closed-form solution for the system of extensional-flexural
coupled equations is then obtained by adding the homogeneous part in equation (22)
to particular part in equation (24) as:

X ()}sx1 = xn(@)}3x1 + {Xp}3><1 = [Gl3x6[E(®)]6x6{Clex1 + {Xp}3><1 (25)
3. Solution for Antisymmetric Laminated Cantilever Beam

A cantilever composite beam subjected to (i) concentrated end harmonic forces; axial
compressive force P,(L)e™, transverse force P,(L)e“¥, end bending moment
M, (L)e*®, and (ii) distributed harmonic forces; axial force g,e**, and transverse
force g,e't.

Imposing the following cantilever boundary conditions at both ends, ie., x =
0and x = L:

sU(0) =W (0) = 5q)x(0) =0, [I‘TuU’(L) + Enq);c(L)] = Px(L)'
Ass[W' (L) + @, (L)] = P,(L), and [B;,U" (L) + D1,y (L)] = M, (L),

Substituting the displacement functions in Equation (25) into above boundary
conditions, the total closed form solution for cantilever laminated composite beam is
then obtained as:

Xc(®)}sx1 = [E]sxs[E(x)]ﬁxs[q’c]gis{Qc}en + {Xp}gxl (26)
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where (Qc>1><6=<_Up _VVP _CDXP px(L) pz(L)_ASSCDxp Mx(L))lx& and
[Wc]gx6:

[G1i G2i 1 (A41Gy;+ Bqyg)me™Lt Ass(miGy; + 1)e™t (§11G1,i+l_)11)miemil‘]:x6

4. Solution for Composite Laminated Simply-Supported Beam

A simply supported composite laminated beam subjected to (a) distributed harmonic
forces: axial force g,e"t, transverse force g,e*, bending moments m,.e**, and (2)
end harmonic bending moments M, (x,)e"* at beam both ends (x, = 0 and L) is
considered.

For simply supported beam, the boundary conditions at both ends (i.e., x, =
0 and L) are:

8U(0) = 6W(0) = 0, [B11U'(0) + D;1®5(0)] = M,(0), [A1;,U'(L) +
Enq);c(l')] =0,

SW(L) = 0, and[B;,U’ (L) + D1; Py (L)] = =M, (L),

From equation (25), by substituting into the above boundary conditions, the general
closed form steady state solution for simply supported laminated composite beam is
obtained as:

{Xs()}3x1 = [Glaxs[E(X)]6x6[Psloxe{Qsext + {Xp}3xl 27)

where <Q5>1><6=(_Up _VVp Mx(o) 0 _VVp _MX(L)>1><61 and [qjs]gx6=
[Gii Gz mya;  (A11Gy; + Byy)me™L G, e™it aimiemiL]:XG in which

a; = (51161,1' + 511)-
5. Solution for Clamped-pinned Composite Beam

Consider a clamped-pinned composite beam under distributed harmonic forces;
transverse force g,(x)e’*, bending moment m, (x) e**, and concentrated bending
moment M, (x) e applied at beam right end (i.e.,x = L).

Imposing the related boundary conditions at beam end (x = 0): U(0) = W(0) =
®,(0)=0, and at end (x=L):[4A,;U' (L) + B;;®,(L)]=0,W(L) =0, and
[B;,U' (L) + D1, ®%(L)] = —M,.(L), the total steady state solution for clamped-
pinned composite beam under given harmonic forces is determined by substituting the
axial, transverse bending and bending rotation functions in equations (26) into the
above boundary conditions, yields:

{Xcs(x)}le = [a]3x6[E(x)]3><6[lpcs]g>%6{ch}6x1 + {Xp} (28)

3x1
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in which (Qeshixe = (“Up —Wp —Py 0O Wy —M; (L))1x6, and
[Weslone = [Gri Gz 1 ayme™d  Gye™d  ayme™ L (.

6. Solution for Clamped-clamped Composite Beam

A clamped-clamped composite laminated beam under distributed harmonic forces;
axial compressive force g,e, transverse force g,e't and bending moment m,.e“*
is considered. The beam has the following boundary conditions at both ends, i.e.:
SU(x) =6W(x) =6P,(x) =0atx =0and L.

By substituting the displacement functions into the above boundary conditions, the
total closed form solution for the clamped-clamped laminated composite beam is then
found as:

{ch(x)}le = [E]3><6[E(x)]3x6[q}cc]giG{Qcc}6x1 + {Xp} (29)

3x1

in  which (Qcchixe =("Up —Wp =@y —U, Wy —Dyp)ige, and
[ch]£x6=[61,i GZ.i 1 Gl,i ek Gz,iemiL emiL]EXG-

Numerical Examples

The analytical closed-form solutions developed in the present study are used to provide
the steady state dynamic responses of composite asymmetric laminated beams under
various harmonic axial and bending forces. The quasi-static response of the composite
beams under harmonic axial and bending forces can be approached by using very low
exciting frequency Q ~ 0.01w, related to the first natural frequency w; of the
composite beam. In order to show the validity, accuracy, and applicability of the
present analytical solution, several examples are conducted for asymmetric composite
beams having various boundary conditions. In these examples, the laminates have the
same thickness and are made of the same orthotropic composite material properties.
The results obtained from the present analytical closed-form solution are compared
with available exact solutions in the literature and established Abaqus finite shell
element. In Abaqus model, the shell S4R element has six degrees of freedom at each
node (i.e., three translations and three rotations) and captures the transverse shear
deformation effects.

Example (1): Asymmetric Laminated Composite beam under harmonic Forces

This example has been utilized by many researchers Tahani, (2007); Hjaji et.al.,
(2016); Jun and Hongxing, (2009) for the validation purposes. In order to establish the
exactness and validity of the present analytical closed-form solution, a graphite-epoxy
asymmetric laminated composite beam with span length of 0.381m and rectangular
cross-section (width b = 25.4mm and thickness h = 25.4mm) is subjected to
uniformly distributed harmonic transverse force gq,(x,t) = 8.0e** kN/m and

91



Journal of Applied Science Issue (11) September (2023)

bending moment m,,(x, t) = 6.0e** kNm/m as shown in Figure (3). The composite
laminated beam having various boundary conditions is considered. All fibre angles
arranged to (30°/50°/30°/50°) and the four plies have the same thickness and made of
the same orthotropic composite material as: E;; = 144.8GPa, E,, = 9.65GPa, G, =
G,3 = 4.14GPa, G,3 = 3.45GPa, v,, = 0.3, and p = 1389.2 kg/m3.

A q,(x,t) = 8.0 e ¥kN/m

bdbdbive bbbl j

TAWAWAW AW AW A WA aVawa I 50°
vvvv\vaVVvl'|300|
m,(x,t) = 6.0 e ¥ kNm/m 20%
x\X L) = 0. b
L=0.381m

Figure (3): A Composite Laminated Beam Under Harmonic Distributed Bending
Forces.

Under uniformly distributed harmonic bending force: q,(x,t) = 8.0e*kN/m and
bending moment m,(x, t) = 6.0e“**kNm/m, the natural frequencies related to the
bending response can be extracted from the steady state dynamic analysis when the
exciting frequency f is varied from nearly zero to 5000Hz. Figures (4a-c) and (4d-f)
demonstrate the peak transverse displacement W, axial displacement U, and bending
rotation ¢, at the midspan (x = L/2) of cantilever and clamped-roller support
composite beams as a function of exciting frequency f. Peaks on the diagrams indicate
the resonance and the natural frequencies of the given composite beams having
cantilevered, and clamped-roller support boundary conditions. Then, the first five
natural frequencies extracted at the peaks of Figure (4) are provided in Table (1) for
cantilever, and clamped-roller support beams as well as for clamped-clamped
boundary conditions.
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Figure (4): Natural Frequencies of Composite Asymmetric Laminated (30°/50°30°/50°)
Cantilever and Clamped-Roller Support Beams Under Distributed Harmonic Forces.

To illustrate the accuracy of the present closed-form solution, the values of the natural
coupled extensional-flexural frequencies obtained from the present formulation in
Table (1) are compared with the corresponding results given in Jun et.al. (2008). It is
noted that, the present closed-form solution exhibit excellent agreement when
compared with those given in Jun et.al. (2008). Accordingly, the present solution is
able to capture the eigen-frequencies of the given composite antisymmetric laminated
beams with cantilever and clamped-roller support boundary conditions. Additionally,
the present solution is capable of obtaining the axial natural frequency (third one) of
the composite clamped-roller support beam, while the solution of Jun et.al. (2008) did
not capture this frequency.
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Table (1): Natural Frequencies for Composite Asymmetric (30°/50°/30°/50°) Laminated

Beam.
Natural frequencies in (Hz)
Boundary Frequency % Difference
condition Number Reference Jun Present Solution =[2-1]/2
et.al, (2008)
1 105.4 105.5 0.09%
2 638.2 638.3 0.02%
Cantilever 3 1679.0 1679.0 0.00%
4 2475.5 2475.6* 0.00%
5 3120.7 3120.8 0.00%
1 451.0 450.7 -0.07%
2 1391.0 1390.9 -0.01%
Clamped-roller
3 - 2475 .4%* -
support
4 2724.8 2724.8 0.00%
5 4338.6 4340.3 0.04%
*  Fully Axial natural frequency

Example (2): Quasi-static and Dynamic Responses

To validate and confirm the accuracy of present analytical closed-form solution to
approach the quasi-static and steady state dynamic responses, the numerical results
calculated in this example were compared with those data given in Khdeir and Reddy
(1994), Chakraborty et.al. (2002), Vo and Thai (2012), and with Abaqus finite element
model.

A composite two-layered asymmetric cross-ply (0°/90°) laminated composite beam
(with b = 25.4mm and thickness h = 25.4mm) which is subjected to the distributed
transverse harmonic force q,(x,t) = 200e*** N /m was analysed for different values
of length to thickness ratio L/h. The quasi-static response of the composite beam under
harmonic transverse force was captured using very low exciting frequency
(i.e.,Q = 0.01w,) related to the first natural frequency w; of the composite beam,
while the steady state dynamic response is computed by using an exciting frequency
Q = 1.80w,, where the first natural frequency of the given composite beam was
obtained as w,; = 182.2 rad/sec. For the sake of comparison, the asymmetric
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laminated composite beam, which has clamped-free and simply supported boundary
conditions, was considered. The two layers have the same thickness and made of the
same orthotropic material properties: E;; = 25.0GPa, E,, = 1.0GPa, G, = G153 =
0.5E,,, Gy3 = 0.2E,,, v;, = 0.25, p = 1389.2kg/m?3.

Quasi-Static Analysis

The transverse displacement function W (x) for quasi-static response of asymmetric
cross-ply laminated beam, which is based on the present closed-form solution, was
calculated in the non-dimensional form in Vo and Thai (2012) as W =
100bh3E,,W /q,L*, and it was compared with the finite element and exact static
solutions given by Khdeir and Reddy (1994), Chakraborty et.al. (2002), and Vo and
Thai (2012). The static results of mid-span displacements for different L/h ratios
presented in Chakraborty et.al. (2002) and Vo and Thai (2012) were based on finite
element formulations, while the corresponding results in Khdeir and Reddy (1994)
were based on exact solution.

Table (2) provides the non-dimensional mid-span transverse displacements W (L/2)
for cantilever and simply supported asymmetric (0°/90°) composite beams under
distributed transverse forces for different span-to height ratios of (L/h)= 5,10,20 and
50. Also the effect of Poison ratio on the static results is presented in Table (2).1t is
obvious that the static results obtained from the present formulation indicate excellent
agreement with results based on other solutions available in the literature.

Table (2): Static Results for non-Dimensional Displacement of Asymmetric Cross-Ply
(0°/90°) Beam Under Distributed Forces with Cantilever and Simply-
Supported Boundary Conditions.

Beam Type Reference Wx=L/2)
(L/h) =5 | (L/h) =10 |(L/h) = 20| (L/h) =50
Khdeir and Reddy, (1994) 16.436 12.579 - 11.345
Chakraborty et.al. (2002) 16.496 12.579 - 11.345
Cantilever Vo and Thai (2012) 16.461 12.604 11.640 11.370

Present | Poison ratio included | 16.448 12.591 11.626 11.357

Solution | Poison ratio excluded | 16.436 12.579 11.615 11.345

Khdeir and Reddy (1994) 5.036 3.750 - 3.339

Simpl Chakraborty et.al. (2002) 5.048 3.751 - 3.353

'mply Vo and Thai (2012) 5043 | 3757 | 3436 | 3.346
supported

Present | Poison ratio included | 5.040 3.752 3.432 3.342

Solution | Poison ratio excluded | 5.036 3.750 3.428 3.339

The quasi-static and steady state dynamic results for the axial and transverse
displacements and related bending rotation plotted against the beam coordinate axis
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x for span to height ratio L/h = 20, in the case of cantilever composite beam, are
presented on figures (5a-b) and (5c-d) respectively. It is observed that, the results for
quasi-static and dynamic responses obtained from the present closed-form solution
demonstrate an excellent agreement with those results based on Abaqus finite element
model using 60 beam B31 elements with 366 degrees of freedom.
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Figure (5): Quasi-Static and Dynamic Responses of Composite Asymmetric (0°/90°)
Laminated Cantilever Beam Under Distributed Transverse Harmonic Force.

Example (3): Asymmetric Laminated Beam under Harmonic Forces

Four-layered asymmetric cross-ply (0°/90°/0°/90°) laminated composite clamped-
roller supported beam of 2.40m length were subjected to distributed transverse
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harmonic forces q,(x, t) = 6.0e** kN /m is considered. The four plies have the same
thickness and made of the same orthotropic composite material properties: E;; =
144.8 GPa, E,, = 9.65 GPa, Gy, = G3 = 4.14 GPa, G,3 = 3.45 GPa, vy, =
0.30, and p = 1550.1 kg/m3. The example is given to:

(i) compute the static response of the composite beam using very low
exciting frequency Q =~ 0.01w;, where the first natural frequency of the
given composite beam is f; = 20.39Hz, and

(i)  determine the steady state dynamic response of the beam under harmonic
force at exciting frequency Q = 2.4w, .

Quasi-static solution

The quasi-static response results for extensional displacement U(x), transverse
displacement W (x), and bending rotation &, (x) are illustrated in Figures (6a,b,c) and
(6d,e,f) for composite beams with clamped-roller and clamped-clamped boundary
conditions, respectively. The static results are based on the present closed-form
solution and Abaqus B31 beam element solution. Results obtained from the present
solution provide an excellent agreement with the corresponding results based on
Abaqus beam model solution.

Steady state dynamic solution

For the exciting frequency f = 2.40 f;, (where f; = 20.39Hz for clamped-roller
beam and f; = 31.19Hz for clamped-clamped beam) the steady state dynamic
response results for extensional displacement U(x), transverse displacement W (x),
and associated bending rotation @, (x) versus the beam coordinate axis (x) are shown
in Figures (7a,b,c) and (7d,e,f) for clamped-roller and clamped-clamped boundary
conditions, respectively. Again, the dynamic results obtained from the present closed-
form solution are in excellent agreement with the Abaqus B31 beam element results.
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Figure (6): Static Responses for Asymmetric Cross-Ply (0°/90°/0°/90°) Laminated
Clamped-Roller and Clamped-Clamped Beams Under Distributed Transverse
Harmonic Force.

98



Journal of Applied Science Issue (11) September (2023)

o440 0.300
;E Invnamic respanse = Ivnamic response
& 0320 A= 2 A0k L D200 2= 2404y
¥ = ' Ty
w 0.1e0 T 0100
5 =
g o.ooo § 0000 ¢
g
g =
0160 & 0100
3 [
M =
% -0.520 —&-Prevent Solutfor 'E -0.200 & Presemd Soludior
5 — b ol utier = ——Abagues Solutfor
-0480 -0.500
0.0 04 0.8 1.2 16 2.0 24 oo 04 0. 1z 16 2.0 24
(al Bearn coordinate 2 ()] (d] Bearn coordinate 2 ()
o.izo =
= Dynamic response . = . DMmEnicresgonse
= 000 2 = 240 M o080 M & = 240,
i @
5 o ) =4 @ %
5 0.080 & 'v\q gu.oqu e &
# & K‘ﬁ
@
5 5 060 & : 8 0030 o .
] f w _a .{
E 0.040 ' 3 2 & "
= 0 (f G'b E n.0zon d:,-i )
E 0.020 A O Prerent Solution ! 2 0.010 & O PresentSolution
o Abagu r Solutfon (\ E r: —Abogus Solution 's,ssw_y
E oo «aﬂ"’#’r h 2,000 M ,
0.0 04 [ 1.2 1o 2.0 24 1] od 0.z 1.2 16 2.0 2d
(k] Bearn coordinate 2 [H] (2] Beam coordinate z (R
oLao o.lzo
—_ Iynamic respanse o Dynamicresponse
: - 0 =2 404
E nizo - - 0 =2 dlak E, 0.o20 - ;bn 1
- o % = -
B 0060 & s = 0040 . %
o [=]

2 ooop 4 S 0000 o
B : %‘# rd
-0.060 = 1 3

2 g S
g g o
S -01Z0 0 Preremd Solidfer E 0020 & Preserf Soleifar -
——abagu s Selutior e ——dAbag er Saletfor
-01E0 -0.120
oo 0.4 0.8 1.2 16 2.0 24 o0 0.4 0.8 1.2 1.6 20 24
[zl Beam coordinate = () E3] Beam cocrdmate z [#)

Figure (7): Dynamic Responses for Asymmetric Cross-Ply (0°/90°/0°/90°) Laminated
Clamped-Roller and Clamped-Clamped Beams Under Distributed Harmonic Force.

Conclusions

Based on the variational form of Hamilton’s principle, the governing dynamic
equations and associated boundary conditions were derived for coupled extensional-
flexural response of asymmetric laminated beams with rectangular cross-sections
subjected to various harmonic bending forces. The analytical closed-form solutions of
extensional-flexural coupled equations were obtained for composite asymmetric
laminated beams with cantilevered, simply supported, clamped-clamped and clamped-
roller boundary conditions.

Comparing the present results with those based on established Abaqus finite element
and exact solutions available in the literature demonstrate the validity and accuracy of
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the present closed-form solutions. Hence, it can be concluded that the present
analytical solutions successfully captured the quasi-static and steady state dynamic
responses for composite asymmetric laminated beams under different harmonic
bending forces. Moreover, the closed-from solutions are capable of extracting the
coupled natural frequencies and steady state modes.
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