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Abstract 

This paper is to introduce a certain class of analytic functions denoted by ( )s

b   

which is defined by generalized Srivastava – Attiya operator. This operator is associated 

with Hurwitz-Lerch Zeta function, obtain an upper bound to the second Hankel 

determinant  |𝑎2 𝑎4 − 𝑎3
2| for  the class ( )s

b  .  

Keywords: Hankel determinant; univalent functions; integral operator; Hurwitz-Lerch 

Zeta function. 

Introduction 

Let  denotes the class of all analytic functions in the open unit disc  

= { :| |< 1},z z  

and given by the normalized power series  

=2

( ) = .k

k

k

f z z a z


+   (1) 

Let S  denotes the subclasses of  consisting of univalent functions. 

For functions f   given by (1) and g   given by 
=2

( ) = ,k

kk
g z z b z


+   we define 

the Hadamard product (or convolution) of f  and g  given by the power series   

=2

( )( ) = .k

k k

k

f g z z a b z


 +  

Definition 1: (Noonan and Thomas,1976) For the function 𝑓 given by (1) for 1q  and 

1n  , the qth Hankel determinant of 𝑓 is defined by  

1 1

1 2 2

1 2 2

( ) = .

n n n q

n n n q

q

n q n q n q

a a a

a a a
H n

a a a

+ + −

+ + + −

+ − + + −
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This determinant has been considered by many authors. For example, Noor (1993) 

determined the rate of growth of ( )Hq n  as n →  for the functions in  with a bounded 

boundary. Ehrenborg (2000) studied the Hankel determinant of exponential polynomials. 

The Hankel transform of an integer sequence and some of its properties were discussed by 

Layman (2001) . Note that the Hankel determinant 𝐻2(1) = |𝑎3 − 𝑎2
2| is related to the 

well-known classical theorem of Fekete-Szego. It is also known  that Fekete-Szego gave 

sharp estimates of   |𝑎3 − 𝜇𝑎2
2| for 𝜇 real and 𝑓 ∈  𝑆. Many authors such as Darus ,2002, 

Darus and Hong 2004 studied the estimation of |𝑎3 − 𝜇𝑎2
2| for various subclasses. In this 

paper, we consider the second Hankel determinant in the case of 𝑞 =  2 and 𝑛 =  2, 

namely, 

𝑯𝟐(𝟐) = |
𝒂𝟐 𝒂𝟑

𝒂𝟑 𝒂𝟒
| = 𝒂𝟐𝒂𝟒 − 𝒂𝟑

𝟐. 

Janteng et al (2007)  have considered the functional 𝐻2(2)  and found a sharp bound for 

the function f  in the subclass RT  of S , consisting of functions whose derivative has a 

positive real part defined as    {𝑓′(𝑧)} ≥ 0.  In their work, they have shown that f R  

then   𝐻2(2) ≤
4

9
. In a previous work Janteng et al,2006 obtained the second Hankel 

determinant and sharp bounds for the familiar subclasses namely, starlike and convex 

functions denoted by ST  and CV  of S . Also they have shown that    𝐻2(2) ≤ 1, 

and  𝐻2(2) ≤
1

8
 respectively. 

Based on the above-mentioned results obtained by other researchers, we determine the 

upper bounds of the second Hankel determinant  𝐻2(2)) for functions belonging to 

subclass ( )s

b  .  

Nagat  and Darus (2011,2012) introduce a general  integral operator 
, ( )s b f z  . It has been 

defined by the means of the general Hurwitz Lerch Zeta function i.e defined on the class of 

normalized analytic functions in the open unit disc  by using the similar approach 

Srivastava and Attiya operator (2007). This operator has been introduced by many 

researchers  namely  Owa , Srivastava  Alexander and many others.  

As we will show in the following: 

Definition 2: Srivastava and Choi (2001) defined the general Hurwitz–Lerch Zeta function 

( , , )z s b  by  

=0

( , , ) = ,
( )

k

s
k

z
z s b

k b




+

  

where (s  , 
0 ) (| |<1),b when z− −   and ( ( ) > 1) (| |= 1).b when z   

Note that:  

*

=2

( , , ) = ( ( , , )) ( ) = .
( 1)

s
s k

ks
k

b
z s b b z z s b f z z a z

k b



   +
+ −
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Owa and Srivastava (1987 ) introduced the operator : , →  . It is known as an 

extension of the fractional derivative and the fractional integral as follows:   

=2

( 1) (2 )
( ) = (2 ) ( ) = ( 2,3, 4, ),

( 1 )

k

z k

k

k
f z z D f z z a z

k

   
 



  +  −
  − + 

 + −
  

where ( )zD f z the fractional derivative of f of order  see (Owa and Srivastava,1984). 

For s  , 0 ,b − −  and 0 < 1,  the generalized integral operator       

,( ) :s b f →    is defined by  

*

, ( ) = (2 ) ( , , ), ( 2,3,4, )s b zf z z D z s b     −    

=2

( 1) (2 )
= , ( ).    (2)

( 1 ) 1

s

k

k

k

k b
z a z z

k k b





  +  −  
+  

 + − − + 
  

Note that :  0

0, ( ) = ( ).b f z f z  

Special cases of this operator include: 

• 0,

=2

( 1) (2 )
( ) ( ) =

( 1 )

k

b k

k

k
f z f z z a z

k

  



  +  −
   +

 + −
  is Owa and Srivastava operator 

(1984). 

• 0

, 1 ,

=2

1
( ) ( ) =

s

k

s b s b k

k

b
f z J f z z a z

k b



+

+ 
  +  

+ 
  is Srivastava and Attiya integral 

operator (2007). 

• 0

1,1
0

=2

( ) 1
( ) ( )( ) = = ,

z
k

k

k

f t
f z A f z dt z a z

t k



  +  is Alexander integral operators 

(1915). 

• 0

1,2
0

=2

2 2
( ) ( )( ) = ( ) = ,

1

z
k

k

k

f z L f z f t dt z a z
z k


 

  +  
+ 

  is Libera integral operators 

(1969). 

• 0

,2

=2

2
( ) ( ) = ,

1

k

k

k

f z I f z z a z
k








 

  +  
+ 

  is Jung– Kim– Srivastava integral 

operator (1993). 

Motivated by Janteng et al (2006), in the present paper, we seek the upper bound of the 

functional 2

2 4 3| |a a a−  for functions f which belong to the subclass ( )s

b   .The techniques 

used here follow the same with the one in ( Janteng et al,2006). 

The subclass ( )s

b   is defined as the following. 

Definition 3: The function f   is said to be in the class ( )s

b    if it satisfies the 

inequality    
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{(
, ( )s b f z )

′
} > 𝟎,    z  ,                 (3). 

 The subclass 0

0 ( )  was studied by MacGregor (1962) who referred to numerous earlier 

investigations that involved functions whose derivative has a positive real part. 

Preliminary Results 

To prove our main results, we need the following Lemmas. 

Let P  be the family of all functions p  analytic in  for which { } > 0p  be given by the 

power series 

2

1 2( ) =1 ..., .p z c z c z z+ + +   

Lemma 1: (Duren, 1983) If p P  then 

(4) | | 2, .kc for all k  

Lemma 2: (Libera and Zlotkiewicz. 1982, 1983). Let the function p P  be given by the 

power series Then, 

2

2 1 22 = (4 ),                               (5)c c x c+ −  

for some , | | 1,x x   and 

3 2 2 2 2 2

3 1 1 1 1 1 14 = 2(4 ) (4 ) 2(4 )2(1 | | ) ,      (6)c c c c x c c x c x z+ − − − + − −  

for some , | | 1.z z   

Main Results 

Our main result is the following. 

Theorem 1 

Let the function 𝑓   given by (1) be in the subclass. ( )s

b   then  

|𝒂𝟐𝒂𝟒 − 𝒂𝟑
𝟐| ≤

𝟒(𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝑺

𝟗(𝚪(𝟐−𝜶))𝟐(𝚪(𝟐−𝜶))𝟐
. 

The result obtained is sharp. 

Proof 

We refer to the method by (Libera and Zlotkiewicz, 1982, 1983). For it follows  

from (3) that ∃ 𝑝 ∈  𝑃 such that 

(
, ( )s b f z )

′

= 𝒑(𝒛) = 𝟏 + 𝑪𝟏𝒛 + 𝑪𝟐𝒛𝟐 + 𝑪𝟑𝒛𝟑 + ⋯,          (𝟕) 

for some (𝑧 ∈ ). From (7) computation and equating coefficients, we obtain 
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𝒂𝟐 =
𝑪𝟏𝚪(𝟑−𝜶)(𝒃+𝟏)𝒔

𝟐𝚪(𝟑) 𝚪(𝟐−𝜶)𝒃𝒔
, 

𝒂𝟑 =
𝑪𝟐𝚪(𝟒−𝜶)(𝒃+𝟐)𝒔

𝟑𝚪(𝟒) 𝚪(𝟐−𝜶)𝒃𝒔
    (8) 

𝒂𝟒 =
𝑪𝟑𝚪(𝟓−𝜶)(𝒃+𝟑)𝒔

𝟒𝚪(𝟓) 𝚪(𝟐−𝜶)𝒃𝒔
  . 

From (8), it can be easily established that 

|𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐| =

𝟏

(𝚪(𝟐−𝜶))𝟐𝒃𝟐𝒔
|

𝑪𝟏𝑪𝟑𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔

𝟖𝚪(𝟑) 𝚪(𝟓)
−

𝑪𝟐
𝟐(𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝒔

𝟗(𝚪(𝟒))𝟐
|               (9) 

Since the function 𝑝(𝑧) is a member of the class 𝑃 simultaneously, we assume without loss 

of generality that 𝑐1  >  0. For convenience of notation, we take 𝑐 1 =  𝑐, (𝑐 ∈  [0,2]).  

Using (5) along with (6), we get 

|𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐| =

𝟏

(𝚪(𝟐−𝜶))𝟐𝒃𝟐𝒔 |
𝑪𝟏[𝑪𝟏

𝟑+𝟐𝒙𝑪𝟏(𝟒−𝑪𝟏
𝟐)−𝑪𝟏𝒙𝟐(𝟒−𝑪𝟏

𝟐)

𝟑𝟐𝚪(𝟑) 𝚪(𝟓)
+

𝟐𝑪𝟏(𝟒−𝑪𝟏
𝟐)(𝟏−|𝒙|𝟐)𝒛𝚪(𝟑−𝜶)𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔

𝟑𝟐𝚪(𝟑) 𝚪(𝟓)
−

[𝑪𝟏
𝟒+𝟐𝒙𝑪𝟏

𝟐(𝟒−𝑪𝟏
𝟐)+𝒙𝟐(𝟒−𝑪𝟏

𝟐)
𝟐

] (𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝒔

𝟑𝟔(𝚪(𝟒))𝟐 |,=

𝟏

(𝚪(𝟐−𝜶))𝟐𝒃𝟐𝒔 |
𝑪𝟏

𝟒+𝟐𝒙𝑪𝟏
𝟐(𝟒−𝑪𝟏

𝟐)−𝑪𝟏
𝟐𝒙𝟐(𝟒−𝑪𝟏

𝟐)

𝟑𝟐𝚪(𝟑) 𝚪(𝟓)
+

𝟐𝑪𝟏(𝟒−𝑪𝟏
𝟐)(𝟏−|𝒙|𝟐)𝒛𝚪(𝟑−𝜶)𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔

𝟑𝟐𝚪(𝟑) 𝚪(𝟓)
−

[𝑪𝟏
𝟒+𝟐𝒙𝑪𝟏

𝟐(𝟒−𝑪𝟏
𝟐)+𝒙𝟐(𝟒−𝑪𝟏

𝟐)
𝟐

] (𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝒔

𝟑𝟔(𝚪(𝟒))𝟐 |, 

,     |𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐|   =

𝟏

(𝚪(𝟐−𝜶))𝟐 𝚪(𝟑) 𝚪(𝟓)(𝚪(𝟒))𝟐 𝒃𝟐𝒔 |
𝑪𝟒

𝟐𝟖𝟖
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 +

𝟑)𝒔(𝚪(𝟒))
𝟐

− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐

(𝒃 + 𝟐)𝟐𝒔] +
𝑪𝟐𝒙(𝟒−𝑪𝟐)

𝟏𝟒𝟒
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 −

𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))
𝟐

− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐

(𝒃 + 𝟐)𝟐𝒔] −

𝒙𝟐(𝟒−𝑪𝟐)

𝟐𝟖𝟖
[𝟗𝑪𝟐𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))

𝟐
− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 −

𝜶))𝟐(𝒃 + 𝟐)𝟐𝒔(𝟒 − 𝑪𝟐)] +
𝑪(𝟒−𝑪𝟐)(𝟏−|𝒙|𝟐)𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))𝟐

𝟏𝟔
|, 

|𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐| =

𝟏

(𝚪(𝟐−𝜶))
𝟐

 𝚪(𝟑) 𝚪(𝟓) 𝚪(𝟒)𝟐 𝒃𝟐𝒔
|

𝑪𝟒

𝟐𝟖𝟖
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 +

𝟑)𝒔(𝚪(𝟒))
𝟐

− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐
(𝒃 + 𝟐)𝟐𝒔] +

𝑪(𝟒−𝑪𝟐)

𝟏𝟔
[𝚪(𝟑 − 𝜶) 𝚪(𝟓 −
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𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))
𝟐
] +

𝑪𝟐𝒙(𝟒−𝑪𝟐)

𝟏𝟒𝟒
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 +

𝟑)𝒔(𝚪(𝟒))
𝟐

− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐
(𝒃 + 𝟐)𝟐𝒔] − 𝒙𝟐(𝟒 −

𝑪𝟐)[
𝟗𝑪𝟐𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))

𝟐
+𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))

𝟐(𝒃+𝟐)𝟐𝒔(𝟒−𝑪𝟐)

𝟐𝟖𝟖
] −

𝑪[𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))
𝟐

]

𝟏𝟔
|, 

An application of triangle inequality and replacement of |x| by  𝜌 give 

|𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐| ≤

𝟏

(𝚪(𝟐−𝜶))
𝟐

 𝚪(𝟑) 𝚪(𝟓) 𝚪(𝟒)𝟐 𝒃𝟐𝒔
[

𝑪𝟒

𝟐𝟖𝟖
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 +

𝟑)𝒔(𝚪(𝟒))
𝟐

− 𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐

(𝒃 + 𝟐)𝟐𝒔] +
𝑪(𝟒−𝑪𝟐)

𝟏𝟔
[𝚪(𝟑 − 𝜶) 𝚪(𝟓 −

𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))
𝟐

] + [𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))
𝟐

−

𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))
𝟐

(𝒃 + 𝟐)𝟐𝒔]
𝑪𝟐𝝆(𝟒−𝑪𝟐)

𝟏𝟒𝟒
+

[
𝟗𝑪𝟐𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔𝚪(𝟒)𝟐 +𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))

𝟐
(𝒃+𝟐)𝟐𝒔(𝟒−𝑪𝟐)

𝟐𝟖𝟖
−

𝑪[𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))
𝟐

]

𝟏𝟔
] 𝝆𝟐(𝟒 − 𝑪𝟐) = 𝑭(𝝆),          (10). 

With  𝜌 =  |𝑥|  ≤  1. we assume that the upper bound for (10) attains at the interior point 

𝜌 ∈  [0,1] and c ∈ [0, 2], then, 

𝑭′(𝝆) =
𝟏

(𝚪(𝟐−𝜶))𝟐 𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒))𝟐 𝒃𝟐𝒔
[𝟗𝚪(𝟑 − 𝜶) 𝚪(𝟓 − 𝜶)(𝒃 + 𝟏)𝒔(𝒃 + 𝟑)𝒔(𝚪(𝟒))𝟐 −

𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒 − 𝜶))𝟐(𝒃 + 𝟐)𝟐𝒔]
𝑪𝟐(𝟒−𝑪𝟐)

𝟏𝟒𝟒
+ [

𝑪𝟐𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))𝟐

𝟏𝟔
+

𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝒔(𝟒−𝑪𝟐)

𝟏𝟖
+

𝑪[𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))𝟐]

𝟖
] 𝝆(𝟒 − 𝑪𝟐), 

Γ(3) Γ(5) Γ(4−𝛼)2(𝑏+2)2𝑠

Γ(3−𝛼) Γ(5−𝛼)(𝑏+1)𝑠(𝑏+3)𝑠Γ(4)2
≤

9

8
, we observed that 𝐹′(𝜌) >  0, for   𝜌 ∈  [0,1], implying 

that F is an increasing function and thus the upper bound for (10) corresponds to 𝜌 =  1 

and so 𝑚𝑎𝑥𝐹(𝜌)  =  𝐹(1). This contradicts our assumption of having the  maximum value 

in the interior 𝜌 ∈ [0,1]. 

Now let 

𝑮(𝑪) = 𝑭(𝟏) = 𝟏

(𝚪(𝟐−𝜶))
𝟐

 𝚪(𝟑) 𝚪(𝟓)(𝚪(𝟒))
𝟐

 𝒃
𝟐𝒔 {

𝟗𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)
𝒔

(𝒃+𝟑)
𝒔

(𝚪(𝟒))
𝟐

𝑪𝟒

𝟐𝟖𝟖
−

𝟖𝚪(𝟑) 𝚪(𝟓)(𝚪(𝟒−𝜶))
𝟐

(𝒃+𝟐)
𝟐𝒔

𝑪𝟒

𝟐𝟖𝟖
+

𝟗𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)
𝒔

(𝒃+𝟑)
𝒔

(𝚪(𝟒))
𝟐

𝑪
𝟐

(𝟒−𝑪𝟐
)

𝟏𝟒𝟒
−

𝟖𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))
𝟐

(𝒃+𝟐)
𝟐𝒔

𝑪𝟐
(𝟒−𝑪𝟐

)

𝟏𝟒𝟒
+

𝟗𝑪𝟐
(𝟒−𝑪𝟐

)𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)
𝒔

(𝒃+𝟑)
𝒔

(𝚪(𝟒))
𝟐

 

𝟐𝟖𝟖
+
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𝟖(𝟒−𝑪𝟐
)

𝟐
𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))

𝟐
(𝒃+𝟐)

𝟐𝒔

𝟐𝟖𝟖
−

𝐂(𝟒−𝑪𝟐
)𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)

𝒔
(𝒃+𝟑)

𝒔
(𝚪(𝟒))

𝟐
 

𝟐𝟖𝟖
+

𝐂(𝟒−𝑪𝟐
)𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)

𝒔
(𝒃+𝟑)

𝒔
(𝚪(𝟒))

𝟐
 

𝟐𝟖𝟖
}. 

Assume that G(c) has a maximum value in an interior of c ∈ [0, 2], by elementary 

calculation we find 

𝑮′(𝑪) =
𝟏

(𝚪(𝟐−𝜶))𝟐𝚪(𝟑) 𝚪(𝟓)(𝚪(𝟒))𝟐 𝒃𝟐𝒔
{[

𝚪(𝟑−𝜶) 𝚪(𝟓−𝜶)(𝒃+𝟏)𝒔(𝒃+𝟑)𝒔(𝚪(𝟒))𝟐

𝟒
−

𝟐𝚪(𝟑) 𝚪(𝟓) (𝚪(𝟒−𝜶))𝟐

𝟗
] 𝑪(𝟒 − 𝑪𝟐)}, 

so that ( ) < 0 (0 < < 2),G c for c  and has real critical point at = 0.c  Therefore, 

max ( )G c for (0 < < 2),c  occurs at = 0.c  Therefore, the upper bound of corresponds to 

𝑐 = 0 and = 1 .  

Hence         |𝒂𝟐 𝒂𝟒 − 𝒂𝟑
𝟐|   ≤

𝟏

(𝚪(𝟐−𝜶))𝟐 𝚪(𝟒)𝟐 𝒃𝟐𝒔
[

𝟒 (𝚪(𝟒−𝜶))𝟐(𝒃+𝟐)𝟐𝒔

𝟗
]. 

This concludes the proof of our theorem. 

Taking = = 0,s   in Theorem 1, reduces to the result of Janteng et al, (2006), Theorem 

3.1, p.6. 

Conclusions 

This paper estimates the coefficients for a general class of analytic functions, which is 

related to the Hankel determinant of second order. The researcher calls for studying the 

Hankel determinant of other classes of the analytic functions through using the same 

operator or generalized hypergeometric functions.    
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